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Abstract 

 This thesis discusses extensions and modifications to a model of semantic 

interference originally introduced by Oppenheim et al. The first of the two networks 

presented extends the original toy model to be able to operate over realistic feature-norm 

datasets. The second of the two networks presented modifies the operation of this 

extended network in order to artificially activate non-shared features of competitor words 

during the selection process. Both networks were extensively tested over a wide range of 

possible simulation configurations. Metrics were developed to aid in predicting the 

behavior of these networks given the structure of the data used in the simulations. The 

networks were also tested for noise tolerance and duration of interference retention over 

time. The results of these experiments show resultant semantic interference behavior 

consistent with predictions over the parameter space tested, as well as high noise 

tolerance and the expected reductions in semantic interference effects as the networks 

were artificially aged. The new network models could be used as simulation platforms for 

experiments that wish to examine the emergence of semantic interference over complex 

or large datasets. 
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1: Introduction 

 It is well known that retrieval of a word from semantic memory affects future 

retrieval time for that same word. This is because the retrieval of a word also induces a 

learning event, which in turn changes the response time of subsequent retrievals. These 

effects have been classified into two cases, one positive and one negative. The first of 

these cases, referred to as repetition priming, improves both accuracy and response time 

of retrieval events for a target word the more it is accessed. The second of these cases, 

referred to as cumulative semantic interference, reduces the response time of retrieval 

events for words semantically related to an accessed word. 

 A computational model set out in Oppenheim, Dell, & Schwartz (2010) seeks to 

explain the underlying mechanisms causing these negative effects. They implement an 

artificial neural network that emulates picture naming experiments. By correctly 

modeling the semantic relationship between network inputs, they successfully produce 

network outputs that demonstrate cumulative semantic interference. In doing this, they 

claim that both repetition priming and semantic interference can both be explained as 

arising from an error-based learning process, and that ultimately it is error-based learning 

that is the driving force behind the changes in semantic memory retrieval time observed 

in experiments. 

 Their system works very simply. They simulate picture naming experiments by 

sequentially activating two inputs of the network corresponding to the “picture”, or word, 

that they wish to “show” to the network. They then apply a function to the network’s 

outputs to determine both the word that the network is outputting and an analog for the 
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response time of the network’s output. This data allows them to determine if the network 

is producing cumulative semantic interference effects. 

This implementation is theoretically useful – it shows that both repetition priming 

and semantic interference can ultimately be explained as the result of an underlying error-

based learning mechanism. However, there are practical applications for a network such 

as this as well. A network like this could be used for simulating picture naming 

experiments if it were adapted to use more realistic inputs. There have been many feature 

norm datasets collected from human participants that could be used as inputs to a system 

such as this. 

Because of its minimalist design, the network they implemented had a number of 

limitations. Word representation was limited to only two semantic features. Furthermore, 

words in this system can only share one feature between them. More realistic feature 

norms can have dozens of features, with complex semantic relationships. Additionally, 

learning in this network operates only on active inputs, which means that non-shared 

inputs of competitor words undergo no learning event, even though the word they 

correspond to is competing for selection. 

This thesis seeks to both extend and modify the Oppenheim et al. architecture to 

support both: (1) generalized feature norm inputs, which allow for variable numbers of 

features, variable activation levels of these features, and arbitrary relationships between 

features of different words, and (2) the modification of connection weights for all inputs, 

shared or non-shared, belonging to competitor words, corresponding to semantically-

oblivious learning events, while maintaining semantically dependent activation. 
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I first present background information necessary to understand the operation of 

neural networks and the basic principles of semantic interference in Chapters 2 and 3 

respectively. I then describe the original Oppenheim et al. model in detail and present my 

extensions and modifications in Chapter 4. Empirical evaluations of the extended and 

modified models which seek to understand their respective behaviors over a wide 

parameter space are presented in Chapter 5. Finally, a summary of conclusions and 

suggestions for future work are briefly discussed in Chapter 6. 
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2: Neural Network Operation 

2.1: Introduction 

 All of the models presented in this thesis are implemented as artificial neural 

networks (Haykin, 2004). Artificial neural networks are a well-studied and well 

understood statistical learning model whose architecture takes inspiration from biological 

neural networks. Sufficiently complex neural networks have been shown to be Turing 

complete, thus making them theoretically suitable for any computational task. All of the 

models in this thesis configure their underlying neural networks to act as a classifier 

(Duda & Hart, 2001). 

 A classifier, in general, takes a set of inputs, called features, and classifies this set 

(the feature vector) into one of many predefined categories. A neural network classifier 

achieves this via propagating the feature vector through its internal architecture and 

examining the resultant output. In all of the models presented, the categories correspond 

to words naming pictures in the picture naming experiments, and the feature vector is a 

set of feature norms describing this picture. The details of this procedure will be 

discussed in Chapter 4. Here, I present a short description of artificial neural networks in 

general. 
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2.2: Architecture 

2.2.1: Overview 

 

Illustration 1 - Basic Example of a Simple 2-Layer Network 

 An artificial neural network is fundamentally a directed graph. It consists of a set 

of nodes, or units, connected by a set of edges, generally referred to as connections. 

Loosely speaking, the units in an artificial neural network draw inspiration from neurons 

in a biological neural network; similarly, the connections draw inspiration from synapses. 

Generally, neural networks are organized into layers, and are often described by the 

number of layers they contain. For the purposes of this thesis, layers are composed of 

units which accept connections from the previous layer and originate connections to the 

next layer. Networks that do not follow this rule (i.e. networks that have connections 

running from a given layer to a previous layer) are referred to as recurrent networks. The 

 

Input 
Unit 

     
Output 
Unit 

Input Layer 

Output Layer 

Connections 

(𝑓𝑓1, 𝑓𝑓2, 𝑓𝑓3) 

Input Feature Vector 

𝑓𝑓1 𝑓𝑓2 𝑓𝑓3 

Output 
Activation Levels 0.2 0.4 0.7 0.1 

Selected 
Output 
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smallest nontrivial neural network, then, is composed of two layers. These layers will be 

referred to as the input layer and the output layer respectively, for reasons that will 

become clear shortly. If a neural network has more than 2 layers, the middle layers are 

collectively referred to as hidden layers. All of the networks presented, however, have 

only 2 layers, and so this chapter will focus on the properties of 2-layer, non-recurrent 

networks. Before we examine the architecture of neural networks as a whole, however, 

we must examine the operation of the network units and connections. 

2.2.2: Unit and Connection Operation 

 As previously mentioned, units can have both incoming connections, from the 

previous layer, and outgoing connections, to the next layer.  Units can be classified by the 

type of connections they have. Input units have only outgoing connections. Output units 

have only incoming connections. Hidden units have both incoming and outgoing 

connections. Thus, the first layer of a neural network, the input layer, is so named 

because it is composed solely of input units. Likewise, the output layer is composed only 

of output units. In general, every unit in a given layer is connected to every unit in its two 

adjacent layers: a set of incoming connections from each unit in the previous layer, and a 

set of outgoing connections to each unit in the next layer. 

 Each unit has an activation level which can be set in one of two ways. If the unit 

is an input unit, the activation level is directly set by the networks’ input. If the unit is not 

an input unit, it calculates its activation level by applying a network function, 𝑓𝑓(𝑥), to all 

of its input connections. Most network functions commonly used take the weighted sum 

of all of the input connections and then apply a function to the result: 
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𝑓𝑓(𝑥) = 𝐾(�𝑤𝑖𝑔𝑖(𝑥))
𝑖

 

where 𝑤𝑖 is the weight of incoming connection i, 𝑔𝑖(𝑥) is the activation level of 

the unit on the originating end of connection i, and 𝐾() is a predefined function, 

referred to as the activation function, that generally maps the resultant output 

activation level to a value limited by the range of K 

Common functions for calculating the activation level of a unit include the step function: 

𝐾(𝑥) = �𝑎 𝑖𝑓𝑓 𝑥 <  𝜖
𝑏 𝑖𝑓𝑓 𝑥 ≥  𝜖 

 where 𝜖 acts as the activation threshold, and which has range (𝑎, 𝑏) 

 the hyperbolic tangent function: 

𝐾(𝑥) = tanh(𝑥) 

 which has range (-1, 1) 

and the logistic function: 

𝐾(𝑥) =  
1

1 + 𝑒−𝑥
 

 which has range (0, 1) 

Each of these functions have different desirable properties for constructing a neural 

network. For all neural networks discussed in this thesis, the logistic function is used as 

the activation function, in keeping with the Oppenheim et al. model. 

 The weighted sum of the input connections for the above expressions was 

calculated by multiplying the weight of each connection by the activation level of its 

source. In a neural network, every connection has a weight that determines the strength of 

“signal propagation” through it via this multiplication. Connection weights are thus 
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generally constrained to the range (0, 1). Connection weights can be changed – indeed, 

changing the weights of connections is the fundamental operation by which neural 

networks learn. I will discuss the mechanism by which these weights are changed in 

Sections 2.2.4 and 2.2.5. 

2.2.3: Network Operation 

 As previously discussed, the overall network classifies a given input by doing the 

following: 

1. Apply an input 

2. Propagate the input through the network 

3. Interpret the output 

I will now explain each of these steps in greater detail. 

 Inputs to a neural network are feature vectors, which are composed of individual 

features. In general, a feature’s value is simply a real value in the range of the activation 

function chosen. In order to apply an individual feature to a network, one simply sets the 

activation level of an input neuron to the feature’s value. Therefore, to apply an entire 

feature vector, one must have an input layer with as many input neurons as dimensions in 

the feature vector. One then simply sets the activation level of each of the input neurons 

to the level of its corresponding feature. Once these activation levels are set, the input is 

allowed to propagate through the network. 

 Propagation is achieved through the hidden and output neurons’ network 

functions. Once the activation levels of the input layer are set, the next layer (either 

hidden or output) allows each of its constituent units to calculate their own activation 
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level. This process is repeated layer by layer through the network until the output layer is 

reached. Since this thesis is concerned with only 2-layer networks, this process takes only 

one step: input layer to output layer. 

 Finally, the output is interpreted by examining the activation levels of the output 

neurons. The exact number of output neurons is determined by the application at hand. 

Oftentimes for classification tasks each output neuron will correspond to membership in a 

single class, so for example a binary classification problem would have two output 

neurons. The input feature vector is classified into the class represented by the output unit 

with the highest activation value. The networks in this thesis adopt this convention, but 

also use the values of the output layer units to calculate a separate function as well. This 

process, corresponding to decision difficulty in picture naming, is described in Chapter 4. 

 In order for this classification process to produce correct results, the weights 𝑤𝑖 of 

the network’s connections must be set correctly. Manually setting these weights in 

general would be nearly impossible. In fact, a neural network’s internal structure is 

notorious for being difficult to understand even when correctly configured, let alone 

engineer. A learning algorithm is therefore adopted to configure the weights of these 

connections automatically. 

2.2.4: Network Learning 

 In order for a neural network to automatically learn accurate and useful 

connection weights, it must be given a training set from which to learn. The training set 

is a set of training examples, which are pairs of the form (input feature vector, output 

class), where the given feature vector is defined as a member of the given class. The use 

10 
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of a training set makes the learning algorithms discussed below supervised learning 

algorithms. A fourth step is then introduced into the operation of the neural network: 

1. Apply an input 

2. Propagate the input through the network 

3. Interpret the output 

4. Adjust connection weights 

In step 4, the connection weights are adjusted via a learning rule – an equation that 

determines the change in weight for each connection. There are many different possible 

learning rules, and the choice of learning rule is often a question of engineering rather 

than mathematical analysis. Learning rules generally seek to minimize network error – 

that is, minimize the number of misclassified inputs. Networks can detect when they have 

produced an erroneous output during training by examining their own output and 

comparing it to the training class. Supervised learning rules will then adjust the network’s 

connection weights in such a way as to move the network’s output closer to the target 

training class. In this way, the network will be more accurate when the same input is 

presented again. 

 Before a network can be reliably used to classify inputs its weights must be 

adjusted in a training phase. The training phase presents each of examples from the 

training set in a random order once, allowing the network to adjust itself each time as 

governed by its learning rule. Additionally, it notes whether the network correctly 

classified the given output. It then repeats this process until a certain accuracy threshold 

is achieved, or for a fixed number of iterations. Each of these iterations through the entire 

11 
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training set is called an epoch (the passing of one epoch corresponds to one iteration 

through the training set). The number of epochs required to train a network to a desired 

threshold is highly dependent on the structure of the network and the structure of the data. 

Sometimes, a given network architecture may fail to reach the desired accuracy threshold. 

We say that these networks do not converge for the given dataset. Networks that achieve 

the accuracy threshold are referred to as convergent. 

2.2.5: The Learning Rule 

 The particular learning rule used by Oppenheim et al. in their network, and used 

in both of the networks presented, is the Widrow-Hoff Rule, tailored for the logistic 

activation function used in their constituent units. The actual implementation of this rule 

will be discussed in Chapter 4; however, a brief discussion of the theory supporting the 

rule is important, as we will see in Chapter 4 that one of the networks presented violates 

one of the assumptions of the rule. 

 The Widrow-Hoff Rule defines a cost function that measures how well the 

network has learned. It then seeks to minimize this cost function via the method of 

gradient descent (Widrow & Hoff, 1960). The cost function 𝐸(𝑤) is defined as follows: 

𝐸(𝑤) =
1
2
�(𝑑𝑖 − 𝑎𝑖)2
𝑖

 

where 𝑤 is the vector of all connection weights, 𝑑𝑖 is the desired activation level 

of the ith output unit (supplied by the output of a training example), and 𝑎𝑖 is the 

observed activation level of the ith output unit (calculated via propagation using 

the input of a training example) 

12 
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Thus, the total “cost” or error calculated by this function is the sum of the square of the 

errors each of the output units is making. We modify each element of 𝑤, 𝑤𝑖 by using 

gradient descent: calculate the gradient of 𝐸(𝑤𝑖), and subtract it from 𝑤𝑖. Once we do 

this for all connections, we will have changed the configuration of the network in such a 

way as to have moved it towards a local minimum of 𝐸(𝑤). This will minimize our error 

over time. We calculate the gradient of 𝐸(𝑤𝑖) with respect to 𝑤𝑖: 

𝜕𝐸
𝜕𝑤𝑖

= �(𝑑𝑖 − 𝑎𝑖)
𝑖

𝜕(−𝑎𝑖)
𝜕𝑤𝑖

= −�(𝑑𝑖 − 𝑎𝑖)
𝑖

𝑔𝑖(𝑥)(1 − 𝑔𝑖(𝑥)) 

and then use this to update the value of 𝑤𝑖: 

𝑤𝑖′ = 𝑤𝑖 − 𝜂
𝜕𝐸
𝜕𝑤𝑖

= 𝑤𝑖 + 𝜂�(𝑑𝑖 − 𝑎𝑖)𝑔𝑖(𝑥)(1 − 𝑔𝑖(𝑥))
𝑖

 

In this expression, 𝜂 is introduced as a scaling term which ranges between 0 and 1 called 

the learning rate. This term is introduced to control the adjustment that the network 

makes for each example. A small learning rate will cause the network to adjust more 

slowly, thus requiring more epochs. However, for complex datasets, small learning rates 

will often perform better than large learning rates, as the large jumps made by the 

network for disparate data can “overcompensate” and overshoot the minimum it was 

moving towards. This can lead to a cycle of overcompensation which converges at rate 

that Haykin describes as “excruciatingly slow”. 

 One of the key assumptions made by this analysis is that: 

𝜕(𝑎𝑖)
𝜕𝑤𝑖

= 𝑔𝑖(𝑥)(1 − 𝑔𝑖(𝑥)) 
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which is true for the logistic activation function. However, we will see in Section 4.3.4 

that one of the networks actually violates this assumption – the gradient of a given 

output’s activation level with respect to a given connection weight is dependent on 

multiple inputs. In order to compensate for this, I would need to re-derive the rule, 

introducing extra terms in the learning rule expression. See Section 4.3.4 for more details. 
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3: Semantic Interference 

3.1: Introduction 

 All of the networks in this thesis seek to model cumulative semantic interference. 

In this chapter, I discuss some background information necessary for understanding what 

gives rise to semantic interference. I also discuss the blocked-cyclic naming paradigm, an 

experimental procedure used to measure interference effects which the networks emulate. 

 All of the experimental methods I will discuss are picture naming experiments, 

wherein participants are asked to name the subject of a picture. In general, a series of 

pictures of objects is presented to a participant, who is then asked to identify the shown 

objects. This is done in order to induce a series of word retrieval events, where the 

participant must retrieve the words that refer to the objects in question from memory. 

These are often referred to as word production tasks.  

The central focus of these studies is to gain insight into the structure of memory, 

including memory of meaning-to-word mappings. With clever experimental design, it is 

possible to begin to understand how related memories are stored and how those memories 

change over time by examining the way in which word retrieval events occur. 

However, one cannot expect to simply watch neural activation in response to 

these pictures and expect to gain insight into the word retrieval process. Instead, a 

number of more easily understood metrics are examined. One metric that is commonly 

used is the word retrieval time, which is the amount of time a word retrieval event 

requires to complete. The experiments which seek to measure word retrieval times will 

measure the response time of the participant – the time the participant takes to 
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successfully identify the subject of the picture by its name. They will then use the 

participant’s response time as a proxy for word retrieval time. 

We will see that response time analysis can yield some interesting insights into 

the structure and behavior of memory. 

3.2: Insights from Response Time 

 The first major effect that can be observed from measuring participants’ response 

time to pictures is repetition priming. Suppose one measures the response time of a 

particular individual’s first exposure to a picture p. If p is then presented again to the 

participant, we will tend to see a reduction in response time to p. Furthermore, this 

reduction in response time can last on the order of days or weeks; the participant will 

answer more quickly for successive presentations of p, even when long interstitial periods 

between the naming sessions are instituted (Brown, 1979). This is the core of repetition 

priming: that repeated exposure to a stimulus will improve response time and accuracy. 

Furthermore, these improvements last a long time.  

Clearly, the participant’s word retrieval process must be changing over time to 

accommodate the observed changes in response times. Lachman & Lachman (1980) note 

that these changes clearly cannot be caused by a transient effect – to attribute them thusly 

would ignore their long lasting effects. It must then be concluded that some sort of long 

term modification occurs in response to this stimulus processing. In other words, it must 

be concluded that this word retrieval event is also a learning event. The notion that all 

word retrieval events are also learning events plays a central role in both the original 

Oppenheim et al. model and the modifications I present. 
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The second major effect one can observe from measuring response time is 

semantic interference, the central concern of this thesis. Semantic interference is complex 

and multi-layered, and arises from a number of competing processes. The particular 

effects that I am concerned with, and that were modeled by Oppenheim et al., however, 

are as follows: for a given target picture p, repetition priming of its semantic competitors 

results in slower word production for p. Unpacking this a bit, suppose one has a set of 

pictures that are all members of the same semantic category, e.g. animals. These pictures 

are presented in sequence. Over time, response times will tend to increase for each 

picture presented as compared to a baseline response time. This baseline response time is 

generally measured by placing the picture in a context wherein it is preceded by pictures 

that are not members of the same semantic category, and measuring the response time in 

this condition. 

This net increase in response time is generally attributed to increases in 

competitor availability caused by the repetition priming of those competitors. Essentially, 

the retrieval is slowed down not by an absolute decrease in availability of the target word, 

but rather a relative decrease in availability of the target word compared to its 

strengthened competitors (Wheeldon & Monsell, 1994).  

This type of semantic interference is known as cumulative semantic interference, 

as its effects build up over time, and last for an appreciable period – on the order of 

minutes in experiments and potentially much longer. This is due to its dependence on 

repetition priming, whose effects are known to last for a very long time as well. Other 
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types of semantic interference (noncumulative semantic interference) will not be 

discussed in this thesis. 

 

3.3: The Three Principles of Howard et al. 

If we wish to model semantic interference, we clearly must have a mechanism 

that simulates repetition priming. Furthermore, we must simulate homogeneous and 

heterogeneous conditions as described in Section 3.2. Finally, the notion of “semantic 

competitors” must be modeled. These requirements are corroborated by Howard et al. 

(2006), who give a set of three necessary principles that must be implemented in any 

system that seeks to model semantic interference: shared activation, competitive 

selection, and repetition priming. In Section 4.1.3, I will discuss precisely how the 

Oppenheim et al. model and my extensions fulfill these three principles. For now, I will 

describe the first two principles in greater detail, as I have already described repetition 

priming in Section 3.2. 

Shared activation in this context refers to the particular way in which 

homogeneous and heterogeneous conditions are implemented. It must be the case that 

when a picture is presented to the model, two things must occur. First, the model must 

select the correct word that identifies the picture; second, the model must also consider 

words that are semantically related to the correct word. In other words, the presentation 

of a picture must activate all words that are semantically related to that picture to some 

degree. The structure of a neural network allows for easy implementation of this 
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requirement if words are described as sets of related features which can be shared among 

other, semantically related words; more details on this can be found in Section 4.1.3. 

Competitive selection is tied into the previous requirement. With the shared 

activation principle implemented, we know we get a set of partially activated candidate 

words upon a picture’s presentation. The competitive selection criterion stipulates that 

these candidate words must delay the production of the correct word. In other words, if 

the target word and the other competitors have very similar activation levels, this must 

result in slower production of the target word overall. This criterion is implemented in the 

networks presented by using a boosting mechanism, further described in Section 4.1.2. 

3.4: The Blocked-Cyclic Naming Paradigm 

 Many experimental setups have been designed in order to produce semantic 

interference in a controllable manner. There are two main paradigms generally used, 

however: the continuous naming paradigm and the blocked-cyclic naming paradigm. 

 The continuous naming paradigm (originally described by Brown, 1979) presents 

a non-repeating stream of semantically related pictures. It also often incorporates non-

semantically related pictures throughout the stream, to counteract a number of short-term 

priming effects that otherwise interfere with the semantic interference effects being 

examined. This paradigm was explored by Oppenheim et al., but will not be simulated in 

this thesis. However, the extensions I describe are capable of running experiments of this 

style.  

Instead, I focus on the blocked-cyclic naming paradigm. In the blocked-cyclic 

paradigm, a small repeating set of pictures is presented to the participant in random order. 
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The participant identifies each as quickly as possible. One presentation of the entire set 

(in random order) is called a cycle. The presentations are repeated for a set number of 

cycles. Once the set number of cycles is complete, the experiment can be repeated again 

for a variable number of blocks. Before any of this occurs, the participants are allowed to 

familiarize themselves with all of the pictures (Frazer et al., 2014). 

The design of the sets of pictures in these experiments is crucial. First, one 

constructs a number of homogeneous sets of pictures, e.g. a set of birds, or a set of 

vegetables. Then, an equal number of heterogeneous sets are constructed, by selecting 

one element of each homogeneous set and collating them together. This ensures that the 

heterogeneous sets are both uniform and equally related to the homogeneous sets. In this 

way, the amount of possible unintended semantic overlap between the homogeneous and 

heterogeneous conditions can be minimized. 

The networks presented in this thesis were tested using simulations of the 

blocked-cyclic paradigm. The training phase of the network corresponds to basic 

vocabulary acquisition. Real participants would already know the language they were 

expected to identify the pictures in. The testing phases are then executed on each of the 

different conditions, constructed exactly as described above. For this step I use separate 

clones of the network for most simulations. 
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4: Extensions to the Oppenheim et al. Model 

4.1: A Short Description of the Original Model 

4.1.1: Motivations 

 As previously discussed, the computational model set out in Oppenheim, Dell, & 

Schwartz (2010) was designed to show that both cumulative semantic interference and 

repetition priming result from a unified underlying error-based learning process – that 

they are, so to speak, “two sides of the same coin”. The authors note three necessary 

principles for cumulative semantic interference, originally outlined by Howard et al. 

(2006): shared activation, competitive selection, and priming. Any system modeling  a 

semantic interference-like effect must include mechanisms that effectively implement 

each of these three principles. With these principles in mind, the authors implemented a 

two-layer neural network with strictly feedforward connections, whose neurons have 

logistic activation functions. This network was designed to simulate experiments from the 

blocked-cyclic naming paradigm. I will first describe the specifics of their network’s 

implementation (hereafter referred to as the baseline network for convenience), and then 

justify the implementation as adequately fulfilling all of the above outlined requirements 

for the emergence of semantic interference. 

4.1.2: Implementation Details 

 The output units of the neural network map to words, i.e., fundamental elements 

of lexical memory retrieval with implicit semantic content. In general, words can be 

thought of as picture names in the blocked-cyclic naming paradigm. Input units of the 
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network represent features, i.e., semantic descriptors of the set of words. These units 

loosely correspond to adjectives or descriptors one might use to describe the subject of a 

picture. A word is uniquely described by a set of features, and is thus decomposable into 

its constituent features. For example, the word whale might be described by the feature 

set {mammalian, aquatic}. In the Oppenheim et al. implementation, each word is limited 

to only two features – this means, in general, the maximum number of words that can be 

described by a feature set of size n is given by: 

𝑤𝑜𝑟𝑑𝑠𝑚𝑎𝑥 = �
𝑛
2
� 

This count assumes that no two words can share both features – if this were the case, the 

words would be identically defined and would be indistinguishable. 

It is important to note here that the only assumption built into the model via the 

feature and word representation is that, at some level, words are de facto represented as 

combinations of decomposable units that are reused across other words. The loose 

correspondence between “adjectives” and features that is used here for convenience is 

therefore not necessary for this model to be valid – the “adjectives” could just as easily be 

sub-concepts, or qualia, or bundles of co-activated neurons – the only important thing is 

that the units are reused across whatever corresponds to words in the system in question. 

 Each input unit is connected to each output unit by a connection with initial 

weight 0. Each connection weight is updated at each time step by a specially tailored 

variant of the Widrow-Hoff learning rule: 

∆𝑤𝑖𝑗 = 𝜂�𝑎𝑖(1 − 𝑎𝑖)(𝑑𝑖 − 𝑎𝑖)�𝑎𝑗 
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where ∆𝑤𝑖𝑗 is the change in strength of the connection from node j to node i, 𝑎𝑖 is 

the activation level of node i, 𝑑𝑖 is the target activation level of node i, and 𝜂 is a 

configurable learning rate parameter that governs the step size of the gradient 

descent algorithm used to minimize the network error. 

The only difference between this rule, used by Oppenheim et al., and the unmodified 

Widrow-Hoff (or delta) rule is the addition of the 𝑎𝑖(1 − 𝑎𝑖) term. This term simply 

weights changes to output nodes at the brink of indecision (i.e. whose output is 

approximately .5) more heavily than changes to output nodes whose outputs are very 

close to either 0 or 1 (i.e., fully activated or fully inactivated). It is a direct result of the 

use of the logistic activation function – this was derived in Section 2.2.4. Because of the 

𝑎𝑗 term, which will be more fully discussed later, the weights of connections emanating 

from inactive input nodes are invariant. 

 The actual activation levels of each output node are calculated using the logistic 

activation function given in Chapter 2. The activation levels of the input nodes are of 

course manually set to reflect the features of the virtual “picture” to be named by the 

network. For example, to “show” a picture of the word “dog” to the network, where the 

word dog is described by ({mammalian, furry}, dog), one would set the activation levels 

of the two nodes representing the features “mammalian” and “furry” to 1, and leave all 

other nodes’ activation levels at 0. 

 Because this network was designed to simulate blocked-cyclic naming paradigm 

experiments, its operation is unusual in that we look to evaluate its performance over time 

in order to reflect the subject’s performance over multiple blocks in the cycle. 
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Additionally, the parameter we are most interested in measuring is not the actual output 

of the network, but rather the relative strength of that output against the other possible 

outputs. This relative strength acts as a proxy for naming time, which itself is used as a 

proxy for word retrieval speed. Because of this, Oppenheim et al. define the “time”, 

tselection,  taken by the network to distinguish the strongest output to be: 

𝑡𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 = log𝛽 �
𝜏

𝑎𝑖 − 𝑎𝑜𝑡ℎ𝑒𝑟𝑠
� 

where 𝛽 is a free parameter called the boosting rate, 𝜏 is a threshold value to 

boost to (which the authors set to be 1), and 𝑎𝑜𝑡ℎ𝑒𝑟𝑠 is the average activation of all 

of the outputs not selected 

This equation, which is computationally equivalent to multiplicatively boosting the 

activation level of each outputted word until the threshold 𝜏 is reached, outputs the 

number of boosts (the value of tselection) required to reach this threshold – this number is 

used in place of response time for the experimental simulations. Modifying the boosting 

rate logarithmically scales the calculated values of tselection. For my purposes, the value of 

the boosting rate must be greater than 1 – I use a boosting rate of 1.06. 

 As with all neural networks, a training phase must be executed before any 

simulations are ran in order to initialize the connection weights such that correct 

responses result from a given input. Because I am concerned with measuring a 

phenomenon that occurs over time, it is extremely important that all comparisons 

between networks (i.e. across experiments) occur between similarly trained networks. 

Oppenheim et al. solve this problem by training each network for a constant 100 epochs. 
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Later, we will see that for extensions to this model, modifications must be made to this 

training period. However, because the networks used in the original experiments are all 

the same size, the use of a constant training period is a reasonable simplification for the 

original network. 

 Included in this network and all of the extensions of the network yet to be 

presented is a noise parameter, θ. In this case, θ selects the standard deviation of a normal 

distribution (with mean 0: 𝑣𝑛𝑜𝑖𝑠𝑒~ 𝑁(0, θ)) from which noise vectors are sampled. Thus, 

this parameter serves to control the magnitude of random perturbations affecting the 

weights propagated throughout the system. For low values of the noise parameter, 100% 

network accuracy can be achieved. For higher values, the network’s ultimate accuracy 

asymptotically approaches a maximal value. A network’s robustness in the face of noise 

is an important parameter to explore. All real-world examples of systems that produce 

semantic interference (e.g. the human brain) are also generally very noisy. This will be 

examined later in Chapter 5. 

4.1.3: Fulfilling the Three Principles of Howard et al. 

 The network as outlined above implements shared activation via its feature-based 

representation of target output words. As mentioned previously, because words are 

abstracted as sets of features, and because those features can be shared across words, 

activation of an individual feature tends to activate more than one word simultaneously – 

in this way, the network implements a shared activation mechanism. 

 Competitive selection is achieved by the network via the boosting mechanism. If a 

particular target word is activated, the outputted boost count is calculated by taking into 
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account the average activation of all competitor words, thus ensuring that increased 

activation in competitors leads to an increase in measured “response time” – precisely the 

definition of competitive selection. It should also be noted that an increase in activation 

of competitors here necessarily corresponds to an increase in the activation of extraneous 

features that do not belong to the target output. In this case, inhibitory connections from 

the extraneous features to the target output will reduce its overall activation, which will 

relatively increase the activation of its competitors, further realizing the competitive 

selection mechanism. 

 Finally, priming is achieved via the implementation of the learning rule. 

Successful access to a target word 𝒐 will necessarily cause the learning rule to update the 

connection weights of the network such that the word in question will be more strongly 

activated in future epochs by directly strengthening the connections from the inputs. 

Furthermore, access to other words will weaken the connections from these words’ inputs 

to 𝒐, which over time will have the net effect of decreasing the net activation of 

competitors for 𝒐, facilitating access to 𝒐. 

 In implementing all three of the Howard et al. principles, the Oppenheim et al. 

framework demonstrates a capacity to exhibit cumulative semantic interference. 

4.2: Direct Generalization 

4.2.1: Motivations 

 The original Oppenheim et al. model imposes two important constraints on the 

possible inputs to their network: first, all input values are binary – an input unit is either 
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fully excited (1) or completely dormant (0); second, each output has precisely two input 

features that specify it. Thus, an input-output pair for the original network is fully 

described by a non-weighted list of two unique features and one target output word, e.g. 

({mammalian, four-legged}, dog). This approach, while effective, is highly restrictive. A 

more general model would have words with more than 2 features, and would allow these 

features to be variably activated – not simply on or off. Indeed, there have been many 

attempts to collect realistic feature-norm data for objects from humans – none of them 

describe a real object as a simple non-weighted set of two features. In McRae et al. 

(2005) we find a rich feature production norm data set meant for experiments of precisely 

this style. With datasets like this in mind, I seek to generalize the original Oppenheim 

model for use in modeling semantic interference over a more general parameter space, 

where I can model both (1) the number of features per word, and (2) the activation levels 

of each of the input features. 
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4.2.2: Implementation Details 

Consider the case of specifying a word such as “penguin”: while it is indeed 

taxonomically a bird, it is likely less central to one’s conception of “bird” than, for 

example, an eagle. Feature production norm datasets such as the one provided by McRae 

et al. capture these relationships by assigning each feature a value derived from their 

respective production frequencies. Thus, each word (concept) in the McRae et al. dataset 

is described by a set of ordered pairs of the form (feature, value). These values range 

from 1 to 30 and reflect the number of participants who listed that particular feature for 

that particular concept. An example norm for the concept “ball” is reproduced below: 

Feature Value 
used_by_bouncing 19 
is_round 17 
used_for_sports 13 
used_by_throwing 8 
used_for_playing 8 
different_colours 6 
is_fun 6 
is_hard 5 

Table 1 - Feature norms for concept "ball" 

 Norms of this form suggest an obvious way to generalize the original network for 

my purposes: simply include an input for each feature as before, and then activate each 

input feature with strength proportional to the corresponding norm weight. This suggests 

the following mapping from McRae et al. feature norms to input activation levels: 

𝑎𝑗 =
𝑣𝑗
∑𝑣

 

where 𝑎𝑗 is the input unit corresponding to a particular feature whose value is 𝑣𝑗 

and ∑𝑣 is the sum of the values of all of the feature norms for that word 
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However, this procedure only works if the number of features per word is fixed. In order 

to further generalize this procedure, we must normalize the length of the resultant vector 

of input activation levels. This ensures that extra weight is not afforded to vectors of 

higher dimension (i.e. words with more features) – and it also allows us to use Euclidean 

distance as a measure of dissimilarity between two words, as all words in this system are 

represented as unit vectors rotated about the origin of a high-dimensional feature space. 

 The final normalization routine used to map the McRae et al. norms to the input 

units is given by the following pseudo-code: 

procedure normalize(input norms, output levels): 
//Find the minimum norm value 
min = norms[0] 
for i = 0 to norms.length: 
 if(norm[i] < min): 
   min = norm[i] 
end for 
//Find the sum of the squares of the weights, 
//normalized by the minimum value 
sum = 0 
for i = 0 to norms.length: 
 sum = sum + (norm[i]/min)^2 
end for 
//Find the inverse sqrt of this sum 
sum = 1.0/sqrt(sum) 
//Use this and the minimum to normalize each weight 
for i = 0 to norms.length: 
 levels[i] = (norms[i]/min)*sum 
end for 
return levels 
Figure 1 - Normalization Pseudocode 

 This procedure operates very simply. We first find the minimum value among the 

norms. We scale each norm by this value, and then find the overall length of the resultant 
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vector. Finally, we normalize the vector by multiplying by the inverse of the calculated 

norm. This ensures that the resultant vector is a unit vector, and that each component 

maintains their relative strength from the original norm set 

With this normalization routine, along with the McRae norms, I hope to show that 

evidence of semantic interference can be found in simulations that reflect a more realistic 

experimental structure and dataset Furthermore, I wish to explore the performance and 

behavior of the network when I systematically vary the internal structure and overall size 

of the dataset Discussion of these results can be found in chapter 5. 

4.3: Modifications to the basic Oppenheim et al. architecture 

4.3.1: Motivations 

 The learning rule of the original Oppenheim network, in keeping with the normal 

rule for gradient descent error minimization, scales the weight change of each connection 

per update by the activation level of the input unit it emanates from. While this leads to a 

network that is easy to understand and analyze, it also lends the following property to the 

system: if an input unit is not being excited, no changes can occur to the weights of any 

of its connections. This means, effectively, that the input features of competitor words are 

never “in play”, so to speak, unless those inputs happen to be shared across words (and 

thus currently active). 

I felt this was unrealistic behavior. When the network is selecting a word to 

output, it evaluates each candidate word against a set of competitor words. I reasoned that 

evaluating the strength of each of these competitors constituted a retrieval event. In 

keeping with the notion that “retrieval events are also learning events”, each of these 
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outputs, whether they are ultimately selected or not, should be treated equivalently. 

Therefore, all of the input features of both competitor words and the selected word 

should be “in play”, shared or non-shared (O’Séaghdha et al., 2013). 

I also reasoned that when presented with a set of words in close proximity, like in 

the blocked-cyclic naming paradigm, a human participant would consider not only 

features of the particular word being shown, but also remnants of the features of other 

homogeneous words presented, and features that themselves were semantically related to 

the features belonging to the word shown. 

Because of this, I sought to modify the network to accommodate changes in 

connection weights for inactive inputs with the following constraints in mind: (1) the 

learning rule should remain unchanged; (2) the basic network architecture (2 layer) 

should remain unchanged, and (3) any resultant modified network should show 

cumulative semantic interference across all datasets over which the unmodified network 

can. 

 In keeping with these principles, I wish to excite additional input units such that 

their connections are modified as well. These input units should in some way be related 

to the baseline input vector – I do not wish to arbitrarily excite input neurons. Arbitrary 

excitement would either be indistinguishable from noise, or indistinguishable from a 

different input – neither of which are useful modifications to model. There are two ways 

of exciting secondary input units without significantly altering the network architecture. I 

dubbed these two variants temporal and spatial excitement paradigms. 

31 
 



www.manaraa.com

 The temporal excitement paradigm seeks to excite secondary inputs as a function 

of their previous states. This would, in effect, model temporary priming, and is in fact 

mentioned by Oppenheim et al. in their paper as a relatively weak explanation for 

cumulative semantic interference. One possible way to model this would be to introduce 

a residual activation parameter, α, which ranges between 0 and 1. The inputs of the 

system at time step t would then be given by: 

𝑎𝑗𝑡 = max (𝛼 ∗ 𝑎𝑗𝑡−1 , 𝛿𝑗) 

 where 𝛿𝑗 is the applied input at time step t 

Clearly, 𝛼 = 0 gives us no residual activation and thus results in no change. Some 

cursory tests were performed using this paradigm, and for almost all values (𝛼 ≥ 0.01) I 

found highly erratic and incorrect outputs from even simple simulations. This does not 

mean that such an effect is therefore unrealistic – only that implementations of it that 

simply decay each input by a constant factor at each time step fail to produce useful 

results. Because this avenue did not seem particularly fruitful, I examined the spatial 

excitement paradigm. 

 The spatial excitement paradigm seeks to excite secondary inputs as a function of 

other currently excited inputs. Because inputs in this paradigm can influence the 

activation of other inputs, a spatial ordering of the inputs can be observed for a given 

input (e.g. unit i activates unit j activates unit k…), hence the “spatial” moniker. The 

most general system in this paradigm instantiates extra connections from each input to 

every other input as well as the connections already seen. Presumably, features 

themselves can sympathetically activate or inhibit one another if they are semantically 
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related (e.g. winged might activate aerial). Indeed, if I wish to activate the non-shared 

features of competitor outputs, a procedure such as this becomes necessary. A competitor 

output is distinguished from the selected output by virtue of its activation level. If its 

activation level is not the maximal level across all outputs, then it is a competitor. 

Because a competitor output’s activation level is entirely determined by the input 

activation levels, I must activate the desired non-shared features as a function of the 

activated features. 

This raises the question: how do I assign realistic weights to these inter-input 

connections? Generally, the connection weights in a neural network are reached via the 

learning process. However, the assumptions built into the Widrow-Hoff learning rule (as 

implemented by Oppenheim et al.) do not hold in network architectures more complex 

than the 2 layer feedforward network they implemented. Clearly, unless I change the 

learning rule, these connection weights cannot be accurately or meaningfully learned in 

the same way the normal input-to-output connections are. 

I have no data on the semantic relationships between features. However, I do 

know which output words are semantically related – and I know which features map to 

these words. This suggests a method for implementing the above changes without 

seriously modifying the underlying architecture or operation of the network. This method 

will be discussed in the next section. 

Ultimately, it is this second modification that I decided to more fully explore. In 

chapter 5, each simulation, when applicable, will be presented as run on the unmodified, 
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generalized Oppenheim-style network from section 4.2 and as run on the modified 

network presented in this section using the spatial excitement paradigm for comparison. 

4.3.2: Implementation Details 

 Suppose I excite a particular set of inputs, ignoring the effects of noise for a 

moment. This will select an output, 𝒐. The output 𝒐 will have a number of competitors, 

some strongly activated, some weakly activated. All of these competitors will share at 

least one feature with 𝒐 – I know this, because otherwise they will not be activated at all. 

When the network updates its connection weights, all of the connections from all of the 

features of 𝒐 will be updated. However, only the shared features will be updated for all of 

the competitors of 𝒐 – even though they are (weakly) activated as well! In other words, 

the network essentially distinguishes between the single output excited “in actuality” and 

outputs excited “sympathetically” when modifying its internal state. This is incongruous 

with the notion that retrieval events are also learning events – there is retrieval without 

learning occurring here. I therefore seek to apply learning to the all features of activated 

outputs, not just the selected one. 

Additionally, suppose a subset of the set of input features for a particular word is 

excited, e.g. excite {mammalian, four-legged} for the input-output pair ({mammalian, 

four-legged, furred}, dog). One can safely assume that a properly trained network will 

reasonably excite the “dog” output unit given this “partial” input (assuming no other 

input is closer). 

If the network recognizes that it is currently viewing a dog from solely the partial 

input, perhaps we can infer the additional, unseen features from the presence of the 
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features that are activated. In other words, perhaps we can form predictive rules of the 

form ({mammalian, four-legged} → {furred}) by examining the output of the partial 

input. This would allow us to artificially excite input units that should be in play yet are 

not, given the structure of the input the network expects. In this way, we can reasonably 

and programmatically excite secondary features that are semantically related to the 

primary activations. 

This also allows us to update the weights of both the shared and unshared features 

of competitor output nodes – by activating the shared node, this method will 

automatically excite the unshared nodes belonging to the competitors as well. 

 The method used for producing these secondary activations is given below in 

pseudo-code. It takes in a set of primary activations and outputs a new set of activations 

that include the primary activations as well as any secondary activations calculated using 

the method: 

procedure exciteSecondary(input primaryInputs, output 
newInput): 
//first, calculate the natural output of the given //inputs 
propagateInputs(primaryInputs) 
foreach output in outputLayer: 
 for i = 0 to primaryInputs.length: 
  newInput[i] += output.level *     
   connectionWeight(inputLayer[i],output) 
 end for 
end for 
for i = 0 to newInput.length: 
 newInput[i] = 1/(1+e^-newInput[i]) 
 newInput[i] = max(newInput[i], primaryInputs[i]) 
end for 
return newInput 
Figure 2 - Secondary Activation Pseudocode 
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 First, we activate the outputs as normal. Then, we temporarily reverse the 

directions of each connection (i.e. features-to-words connections become words-to-

features). We treat the output activations, calculated in step one, as inputs, and propagate 

the activations back to the feature layer. We then take the maximum of this new 

calculated input set and the old primary inputs, and use this as our new input. 

4.3.3: Implementation Analysis 

 We can show that this procedure is roughly equivalent to instantiating additional 

connections between features: 

 From the first step, we know the value of each output node is: 

𝑜𝑖 =
1

1 + 𝑒−∑ 𝑤𝑖𝑗𝑎𝑗𝑗
 

where 𝑤𝑖𝑗 is the weight of the connection from input j to output i, and 𝑎𝑗 is the 

value of input j. 

After the connection reversal step, we have the value of each input node as: 

𝑎𝑗 =
1

1 + 𝑒−∑ 𝑤𝑖𝑗𝑜𝑖𝑖
 

If we use the Taylor expansion of the output node’s value as an approximation, we get: 

𝑜𝑖 =
1
2

+
∑ 𝑤𝑖𝑗𝑎𝑗𝑗

4
+ 𝑂(�𝑤𝑖𝑗𝑎𝑗

𝑗

3
) ≈

1
2

+
∑ 𝑤𝑖𝑗𝑎𝑗𝑗

4
 

We can safely neglect the 𝑂(∑𝑤𝑖𝑗𝑎𝑗
3) term, as 0 < 𝑤𝑖𝑗𝑎𝑗 < 1. 

Substituting this into our expression for the input excitation, we get: 

𝑎𝑘 =
1

1 + 𝑒−∑ 𝑤𝑖𝑘(12+
∑ 𝑤𝑖𝑗𝑎𝑗𝑗

4 )𝑖

=
1

1 + 𝑒−∑
𝑤𝑖𝑘
2 +𝑤𝑖𝑘

4 ∑ 𝑤𝑖𝑗𝑎𝑗𝑗𝑖
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Then we set: 

𝑎𝑘 = max (𝑝𝑖 ,
1

1 + 𝑒−∑
𝑤𝑖𝑘
2 +𝑤𝑖𝑘

4 ∑ 𝑤𝑖𝑗𝑎𝑗𝑗𝑖
) 

 where 𝑝𝑖 is the applied input at i. 

 Suppose we had connections from each feature to every other feature. Then, the 

activation level of each feature would be given by: 

𝑎𝑘 =
1

1 + 𝑒−∑ 𝑤𝑖𝑘𝑎𝑖𝑖
,𝑤ℎ𝑒𝑟𝑒 𝑤𝑖𝑖 = 0 

Further massaging our derived expression for 𝑎𝑘 gives: 

𝑎𝑘 =
1

1 + 𝑒−∑
𝑤𝑖𝑘
2 −∑ 𝑤𝑖𝑘

4 ∑ 𝑤𝑖𝑗𝑎𝑗𝑗𝑖𝑖
=

1

1 + 𝑒−𝜑−∑
𝑤𝑖𝑘
4 ∑ 𝑤𝑖𝑗𝑎𝑗𝑗𝑖

∝
1

1 + 𝑒−𝜑𝑒−∑ 𝑤𝑖𝑘
2 𝑎𝑗𝑖

 

 where 𝜑 = ∑ 𝑤𝑖𝑘
2𝑖 , a constant 

Examining the last term in this expression reveals that this procedure is very similar to 

instantiating additional connections from each input node to every other input node 

whose strength is determined by and fixed to the strength of the connections between 

input layer and output layer, to a constant factor with weights approximately squared. 

This is close to the behavior I wished to emulate in the spatial excitement paradigm, as it 

is these connections that will allow me to activate the non-shared features of competitor 

nodes appropriately. The weights of these connections are already found for us, as a 

result of the inferred rules I calculate in the exciteSecondary procedure. I therefore use 

this procedure to emulate semantic dependence between features derived from their 

word-set memberships, allowing me to involve secondary features that were not 
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originally “in play” without changing the learning rule, in order to activate non-shared 

features of competitor outputs. 

 It should be noted that there is no reason this procedure could not be repeated 

multiple times. However, it can be shown that repetition of this procedure produces 

negligible changes in the weights very quickly. Each repetition doubles the exponent on 

the weight propagations. Since these weights are between 0 and 1, these repetitions will 

exponentially quickly produce weight changes approaching 0. Thus, my implementation 

uses a single application of this procedure in the modified network. 

4.3.4: Limitations of the modification 

 Because the activateSecondary procedure partially emulates connectivity within 

the input layer, it also violates some assumptions of the Widrow-Hoff learning rule. As 

discussed, the learning rule as implemented requires the correct calculation of the 

direction of the steepest gradient from its current location in the network’s error-space. In 

order to calculate this gradient, it needs to calculate what the effects of connection weight 

changes will be. Because of the extra activateSecondary step, I violate the predictive 

power of the learning rule, which in turn no longer guarantees that it will converge 

directly to the nearest minimum. Fortunately for us, empirical testing of the modified 

network shows that it does eventually converge to this minimum, i.e. that the errors 

introduced by the activateSecondary method are not great enough to cause divergent 

behavior Unfortunately for us, as I have previously stressed, I am concerned with the 

evolution of these networks over time – in order to make useful comparisons between two 
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simulation runs, the networks must have had similar behaviors in approaching the 100% 

accuracy region. 

 The modified network is not guaranteed to approach the local minimum directly. 

Indeed, we see for many starting positions it often orbits around the local minimum, 

taking longer than expected by the gradient descent algorithm to reach it. Shown below is 

an example of this behavior demonstrated by the learning curve of a sample run on a 

simulation known to avoid the local minima: 

 

Figure 3 - Nonmonotic training curve produced by gradient descent with incorrect assumptions (taken from 
Simulation Group 1, 7 Shared Features, 16 Objects, 5 Shared Features, 0 Cross Features) 
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Unfortunately, lowering the learning rate does not solve this problem in all (or even 

most) cases. The only solution is start the gradient descent algorithm (i.e. initialize the 

connection weights) at a portion of the error-space that happens to proceed in the correct 

direction immediately. Because artificially calculating these locations in many ways begs 

the question (i.e. depends on external sources to solve the network rather than the 

network itself) I chose instead to discard data points generated by the modified network 

that do not monotonically approach the local minimum of the error-space for the sake of 

analysis. Please note that these networks still produce interference, and still correctly 

learn – they are just impossible to compare to the networks that immediately approach 

their respective local minima, as they take orders of magnitude longer to converge and 

produce very different boost counts (but that are still compatible with the requirements 

for semantic interference). 
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5: Empirical Evaluations 

5.1: General Methodology 

5.1.1: Overview 

 All evaluation of both the extended network (see Section 4.2) and the modified 

network (see Section 4.3) was carried out by simulating variations of experiments from 

the blocked-cyclic naming paradigm, described in Section 3.4. I considered a particular 

architecture as successfully modeling cumulative semantic interference if it was both (1) 

capable of stably learning (i.e. achieving 100% accuracy) the entire space of words 

presented to it in the training stage, and (2) capable of producing boosting curves for both 

the homogeneous and heterogeneous conditions which demonstrate both repetition 

priming and the effects of semantic interference where applicable. In these simulations, I 

expect both the homogeneous and heterogeneous conditions to demonstrate repetition 

priming, which will manifest itself as a reduction in boost counts as I repeat blocks. I 

expect to see semantic interference in the homogeneous conditions only. This will 

manifest as a steady increase in boost counts within individual blocks. 

 I will show that both proposed extensions to the original Oppenheim et al. model 

are successful in reproducing the expected effects. Once this is established, I will explore 

the parameter space of the simulated experiments in order to determine the effects of the 

internal structure of the dataset used for a given experiment. Because these relationships 

are generally difficult to control for real experiments, these simulations should offer some 
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quantitative insight into the expected strength of semantic interference as a function of 

the number of shared features per group, the number of groups, and other parameters. 

 The simulation results are broadly organized into three groups, with each group 

becoming progressively more general. In the final group, I use a subset of the McRae et 

al. (2005) norms for a number of experiments in order to show that both networks can 

scale to larger datasets. I also present a short section exploring the effect of noise on each 

network architecture. 

5.1.2: Network Parameters 

 Unless otherwise specified, the network parameters for each simulation were set 

as follows: 

Parameter Value 

Learning rate (η) 0.75 

Activation noise (θ) 0.03 

Boosting rate (β) 1.06 

Threshold (τ) 1 

Smoothing (σ) 100 

Table 2 - Default Network Parameters 

 These values were chosen both to provide a reasonably large range for the boost 

outputs and to minimize the training time of the network. The smoothing parameter 

controls the number of times each simulation is run. With its value set to 100, each 

simulation presented in this thesis was run 100 times; their results were then averaged to 

produce the final output graphs. This effectively allows us to “smooth out” any 
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aberrations caused by noise, allowing us to see the results more clearly than a single run 

would allow. 

 As previously mentioned in Chapter 4, for my purposes, the number of training 

cycles used for each simulation cannot be simply fixed at 100 as was done in Oppenheim 

et al.  Because I want to directly compare results between simulations of different 

experiments, I need to ensure that the networks involved in each of these simulations 

have been trained analogously to one another. To illustrate this point, consider two 

networks learning the same experimental dataset, one trained for 100 cycles and another 

trained for 1000. Clearly, the network trained for 1000 cycles will on average produce 

lower boost values for an identical simulation than the network trained for 100 cycles – it 

has had more time (in the form of additional training cycles) to further differentiate each 

output, thus lowering the boost count. Furthermore, consider two networks learning 

different datasets, one large and one small – if I train each network for 100 cycles, it is 

conceivable that the network operating on the smaller dataset will have achieved 100% 

accuracy while the network operating on the larger dataset will still make occasional 

errors – clearly the outputs of these two networks cannot be directly compared. 

Thus, I establish the following convention: for all simulations presented, each 

network has been trained precisely the number of epochs required to reach 100% 

accuracy, and then immediately tested. This presents two opportunities: because I know 

each network has just reached 100% accuracy, I can compare their outputs, and I can use 

the number of epochs until 100% accuracy as a metric for evaluating how “difficult” a 
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particular dataset is to learn for the network, i.e. for estimating the time complexity of a 

given network as a function of the complexity and size of the dataset 

5.1.3: Simulation and Dataset Parameters 

 For most of the simulations presented, the above network parameters are fixed. I 

instead vary the simulation and dataset parameters to try and evaluate the two networks 

performance over a wide variety of datasets. A list of simulation parameters that were 

varied and an approximate range over which they were varied is given below: 

Parameter Determined by Range 

Total no. of words (i.e. no. of output units) Dataset 16-48 

Total no. of features (i.e. no. of input units) Dataset 14-274 

No. of features per word Dataset 2-21 

No. of words per group Simulation 4 

No. of blocks Simulation 6 

Average no. of features shared between all members of a group Both 1-7 

Average no. of features shared between all members of multiple 

groups 

Both 0-6 

Table 3 - Simulation and Dataset Parameter Ranges 

A number of the parameters above are determined solely by the structure of the 

data over which the simulation runs. These parameters include the overall size of the 

dataset, and the number of features required to specify a particular word. In order to 

control these parameters directly, I construct synthetic datasets with specific properties 

44 
 



www.manaraa.com

for simulation groups 1 and 2. For simulation group 3, I leave these parameters to be 

determined by the implicit structure of the McRae et al. feature norm dataset 

Two of the above parameters are controlled solely by the simulation setup. I fix 

the number of words per group at 4 as a matter of convention. Generally, blocked-cyclic 

naming paradigm experiments tend to set the group size at 4 as well. I also fix the number 

of blocks to 6, resulting in a 24-trial simulation length. 

The final two parameters are determined by both the simulation setup and the 

underlying data: the inter- and intra-relatedness of any clusters present in the data. The 

average number of features shared within and across groups is determined by both the 

structure of the data and by the way in which I construct the particular groups for a 

simulation. In the next section, I introduce a metric for quantitatively measuring these 

values, along with a set a metrics for summarizing the output of a given simulation. 

5.1.4: Metrics Used 

 I define a number metrics used to describe both simulation outputs and dataset 

structure. The first of these metrics is a measure of word dissimilarity. It is a function that 

takes two words and returns a value in the range (0.0, 1.0) which represents the amount 

of feature overlap that the two words have. If the value of the dissimilarity metric is 1.0, 

the two words have no features in common. If the value of the metric is 0.0, the two 

words are identical, and thus share all features and activation levels of those features. The 

metric is simply defined as the normalized Euclidean distance between the two words wa 

and wb in feature space as follows: 

45 
 



www.manaraa.com

𝐷𝑊(𝑤𝑎,𝑤𝑏) =  �
∑ �𝑓𝑓𝑘𝑎 − 𝑓𝑓𝑘𝑏�

2
𝑘

2
 

where 𝑓𝑓𝑘𝑎 is the activation level (after applying the normalization routine outlined 

in section 4.2.2) of the k-th feature of word a and 𝑓𝑓𝑘𝑏 is the activation level of the 

k-th feature of word b 

The division by two is just to scale the outputted range of values from (0,√2) to (0, 1), as 

two completely orthogonal word vectors will be separated by a distance of √2 (they are 

all unit length due to the normalization routine). 

 This metric is useful for finding homogeneous groups in a large word-space. 

Simply test words pairwise until a clique of words with low average dissimilarity is found 

– this is a homogeneous group. I generalize this notion by defining a measure of group 

dissimilarity between GA and GB, where a group is a collection of words, as follows: 

𝐷𝐺(𝐺𝐴,𝐺𝐵) =
∑ ∑ 𝐷𝑊(𝐺𝐴𝑖 ,𝐺𝐵𝑗)𝑗𝑖

|𝐺𝐴||𝐺𝐵|  

 where 𝐺𝐴𝑖 is the i-th word of group A and 𝐺𝐵𝑗is the j-th word of group B, and |𝐺| 

 is the number of elements in group G. 

This metric operates identically to the word dissimilarity metric, but for groups of words 

instead of individual words. A group dissimilarity of 1.0 means that the two groups in 

question share no features, while a group dissimilarity of 0.0 means that there is a 

bijective mapping between the two groups such that each word and its image are 

identical. 
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 Using this definition for group-dissimilarity, I can define a third useful metric for 

determining the heterogeneity of a given group: auto-dissimilarity. The auto-dissimilarity 

of a group G is given by: 

𝐷𝐴(𝐺) = 𝐷𝐺(𝐺,𝐺) 

I say that a group G is more heterogeneous than a group H if 𝐷𝐴(𝐺) > 𝐷𝐴(𝐻). 

 The metrics above are useful for examining the internal structure of a given 

dataset, for finding homogeneous groups within that dataset, and for determining the 

relationships between groups once they are chosen. 

After a set of groups is chosen for a given experiment, I execute the simulation. I 

define a number of metrics over the outputs of these simulations for summarizing and 

comparing results between a large number of simulations.  

The first of these metrics is the training period 𝑇, which I define as the number of 

epochs required to reach 100% accuracy. I seek to show, as expected, that this metric is 

generally a function of the overall size of the dataset. 

The second metric seeks to quantify approximately how much semantic 

interference is occurring for a given data set. It is defined as follows: 

�̅� =
�𝑚ℎ𝑒𝑡𝑒𝑟𝑜𝑔������������
�𝑚ℎ𝑜𝑚𝑜𝑔�����������

 

where 𝑚ℎ𝑒𝑡𝑒𝑟𝑜𝑔����������� is the average slope of the heterogeneous groups boost counts over trials 

and 𝑚ℎ𝑜𝑚𝑜𝑔���������� is the average slope of the homogeneous groups boost counts over trials 

Because semantic interference is observed via an increase in boost counts within a block, 

and this interference should only occur for homogeneous groups, heterogeneous groups 

should, on average, have a steeper slope than their homogeneous counterparts. This 
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metric simply calculates the ratio of the slopes between the two conditions – values larger 

than 1 indicate an interference effect, with larger values indicating more interference. I 

seek to show that this metric is a function of the dissimilarity metrics presented earlier. 

This would imply that the magnitude of semantic interference observed is a function of 

the homogeneity of the dataset, as would be expected from a system that claims to model 

this effect. 

5.1.5: Implementation Details 

 Once the network is trained for its training period (𝑇), the simulation produces 

multiple copies of the network. Each copy then simulates a particular condition’s block-

cycle as would be expected. This entails presenting the set of words in that particular 

condition in random order (over the course of a single block) for the specified number of 

cycles. The results from each copy are then collated into a single graph. In this way, I 

prevent the ordering of the condition presentations from affecting the network’s output. 

As previously mentioned, these steps are repeated σ times and averaged to produce the 

final output graphs. 

 The construction of heterogeneous conditions proceeds as in real experiments – a 

single member from each homogeneous group is chosen and combined to create a 

condition that is guaranteed to be heterogeneous with respect to the homogeneous 

conditions. Multiple heterogeneous conditions can be constructed this way – indeed, the 

number of possible heterogeneous conditions able to be constructed from N sets of M 

elements is given by: 
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|𝐻| = 𝑀𝑁 

For the simulations, I use two different, randomly generated heterogeneous conditions, 

constructed from the set of homogeneous conditions as just described. 

5.2: Simulations 

5.2.1: Showing Semantic Interference 

 Before the results of the simulations from the three groups are presented, it is first 

important to establish that both the extended and the modified networks produce the 

expected semantic interference from the baseline network, presented in Section 4.1.2. 

Some summary parameters of the network are given below: 

Parameter Value 

Total no. of words (i.e. no. of output units) 16 

Total no. of features (i.e. no. of input units) 20 

No. of features per word 2 

No. of features shared between all members of a group 1 

Table 4 - Summary Parameters of the Baseline Experiment 

Because both the extended and the modified networks allow for variable activation levels 

of the input features for a given word, each word was defined to equally weight both of 

its constituent features in order to conform to the binary activation levels present in the 

original network. The results of this simulation on both networks are presented below, 

plotted as the selection time in boosts as a function of the trial number: 
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Figure 4 - Baseline Simulation, Extended Network 

 

Figure 5 - Baseline Simulation, Modified Network 
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Note that the intra-block boost counts for the homogeneous conditions in both 

graphs increase, while the intra-block boost counts for the heterogeneous conditions 

remain constant. This is indicative of semantic interference effects. Also note the overall 

inter-block boost count improvements in both graphs for all conditions. This is indicative 

of repetition priming effects. Taken together, we have strong evidence for cumulative 

semantic interference effects in both networks. Indeed, both networks perform identically 

on this simulation barring the relative difference in boost counts. Thus, both networks 

successfully reproduce the results of Oppenheim et al. Now, I present three groups of 

simulations, each of increasing internal complexity, that seek to generalize these results 

to larger and more complex networks. 

5.2.2: Simulation Group 1 

Simulation Group 1 was designed in order to explore direct generalizations of the 

baseline simulation while deviating as little as possible from the limitations set forth in 

the original model. Because of this, Group 1 is the least general of the 3 simulation 

groups, and thus explores a very small subspace of the full network and simulation 

parameter spaces. However, because I limit the parameter space so severely, I am able to 

fully cover significant portions of it via simulation, allowing for nearly exhaustive testing 

of the subspace. 

In Simulation Group 1, each simulation’s homogeneous conditions have identical 

structure. For example, if there are 4 groups in a given simulation, each of these 4 groups 

will consist of 4 words, which will each share the same number of features between them. 
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Furthermore, the activation levels of the features corresponding to every word in the 

simulations in Group 1 are equal, in accordance with the baseline simulation. 

In Simulation Group 1, I varied the simulation parameters according to the table 

below: 

Number of Features 
per Object 

Number of 
Homogeneous 
Groups (𝑮𝒄𝒐𝒖𝒏𝒕) 

Number of Shared 
Features within each 
group (𝒇𝒔𝒉𝒂𝒓𝒆𝒅) 

Number of Shared 
Features across each 
group (𝒇𝒄𝒓𝒐𝒔𝒔) 

2 4 1 0 
3 6 2 1 
4 8 3 2 
5 12 4 3 
6  5 4 
7  6 5 

Table 5 - Parameter Values for Simulation Group 1 

Every possible combination of each of these parameters was simulated. I discard 

logically inconsistent combinations of the above parameters and further stipulate that 

each word must have at least one unique feature, in order to avoid degenerate cases with 

identical words. After these combinations are removed, we are left with a grand total of 

224 simulations. Each of these simulations was run on both network architectures. The 

metrics discussed earlier in this chapter were then calculated and combined into summary 

graphs. 

 I first look at the case where the number of shared features across groups 

(hereafter referred to as “cross features”) is 0 – this corresponds exactly to the baseline 

model, which had 1 shared feature and 1 unique feature for every word. By fixing this 

parameter, we can visualize the residual four dimensional space in 4 three dimensional 

slices, each corresponding to a different value for the number of homogeneous groups. 
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Presented below are 2 of those slices – the highest and lowest, corresponding to 4 groups 

and 12 groups respectively: 

 

Figure 6 - 𝝁𝝁� as a function of Shared Features and Features per Object in the Extended Network with no cross 
features, 4 groups 
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Figure 7 - 𝑻 as a function of Shared Features and Features per Object in the Extended Network with no cross 
features, 4 groups 

 

Figure 8 - 𝝁𝝁� as a function of Shared Features and Features per Object in the Modified Network with no cross 
features, 4 groups 
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Figure 9 – 𝑻 as a function of Shared Features and Features per Object in the Modified Network with no cross 
features, 4 groups 

 

Figure 10 - 𝝁𝝁� as a function of Shared Features and Features per Object in the Extended Network with no cross 
features, 12 groups 
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Figure 11 - 𝑻 as a function of Shared Features and Features per Object in the Extended Network with no cross 
features, 12 groups 

 

Figure 12 - 𝝁𝝁� as a function of Shared Features and Features per Object in the Modified Network with no cross 
features, 12 groups 
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Figure 13 - 𝑻 as a function of Shared Features and Features per Object in the Modified Network with no cross 
features, 12 groups 

Examining the extended network’s outputs allows us to draw some early 

conclusions about the effects of network size and group composition on both �̅� and 𝑇. 

Note the similarities between Figures 6 and 10 – even though Figure 10 shows a 

network 4 times as large, the training periods for each simulation remained unchanged. 

This makes sense when one considers that all inputs are trained in parallel during a 

particular epoch. As we grow this particular simulation from the 4 group to the 12 group 

case, no interdependence exists between the original four groups and the additional 

groups added; thus, we see no increase in training period for the larger network. We will 

see this size invariance no longer holds as the interdependence between groups is 

increased by introducing features shared across groups.  
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Comparing the �̅� graphs (figures 5 and 9) for the extended network, we see 

identical shapes. Because the overall structure of the dataset is not being modified when 

the size of these simulations is increased, this is the expected result. If the groups shared 

any features between each other, however, this size invariance would no longer hold true, 

as we will see later. 

Finally, we see very clearly the effect of group composition on both �̅� and 𝑇. In 

both cases, we see that the amount of interference observed varies as a function of the 

ratio of shared features to total features: 

�̅� ~ 
𝑓𝑓𝑠ℎ𝑎𝑟𝑒𝑑
𝑓𝑓𝑡𝑜𝑡𝑎𝑙

 

However, we know that this ratio is itself proportional to one of the previously defined 

metrics, the auto-dissimilarity, 𝐷𝐴(𝐺). Because all the groups in these simulations are 

identical, we can typify each simulation by a single auto-dissimilarity value, given by: 

𝐷𝐴(𝐺) = 𝐷𝐺(𝐺,𝐺) =
∑ ∑ 𝐷𝑊(𝐺𝑖 ,𝐺𝑗)𝑗𝑖

|𝐺|2 =
12 ∗ 𝐷𝑊(𝐺0,𝐺1)

16
=

3
4
�

(𝑓𝑓𝑡𝑜𝑡𝑎𝑙 − 𝑓𝑓𝑠ℎ𝑎𝑟𝑒𝑑)
𝑓𝑓𝑡𝑜𝑡𝑎𝑙

=
3
4
�1 −

𝑓𝑓𝑠ℎ𝑎𝑟𝑒𝑑
𝑓𝑓𝑡𝑜𝑡𝑎𝑙

 

Furthermore, we can empirically relate this expression to the output values for �̅� as: 

�̅� ≈ e
.55

𝐷𝐴(𝐺)−.75
= 𝛽 exp

⎝

⎜
⎜
⎛ ∝

3
4�1−

𝑓𝑓𝑠ℎ𝑎𝑟𝑒𝑑
𝑓𝑓𝑡𝑜𝑡𝑎𝑙 ⎠

⎟
⎟
⎞

+ 𝛾 
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where ∝, 𝛽, and 𝛾 are arbitrary scaling constants and are dependent on the 

normalization routine chosen. The values given above work relatively well for the 

normalization routine (where we normalize every vector to length 1) 

A similar expression can be derived for 𝑇. 

 Examining the modified network’s outputs highlights the issues discussed in 

section 4.3.4. In the 4 group slice (Figure 7), the discontinuities make it very difficult to 

read the output strictly from the graph; however, manual examination of the data shows 

that removing these discontinuities results in a graph nearly identical to Figure 11 as 

expected. Removing the single discontinuity in Figure 11 (Features/Object = 7, Shared 

Features = 1) gives us a graph with the exact same shape as Figures 5 and 9 – in other 

words, the modified network produces the same analysis (when it can find the correct 

solution immediately) as the extended network. Furthermore, the modified network 

actually produces more semantic interference than the extended network for the same 

simulation configuration, i.e. its value for ∝ is higher for a given network configuration 

than the extended network. However, examining Figures 8 and 12 show that this increase 

in distinguishability comes at the cost of training time – the training period 𝑇 for the 

modified network tends to be much larger than the training period for the extended 

network on the same simulation. These differences will become most obvious in 

Simulation Group 3, over the full McRae norms. This further implies that the scaling 

constant ∝ is operant in both the expression for �̅� as well as the expression for 𝑇 – 

indeed, in the simulation results we often see a correlation between the values for 𝑇 and 

the values for �̅�. It is unclear if this relationship holds in real experiments – it may be the 
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case that more complex concepts that take longer to learn tend to produce more semantic 

interference in trials than simpler concepts. This will be further discussed in Chapter 6. 

 Thus far I have examined only cases wherein the individual groups are both 

identical and independent, making both  𝑇 and �̅� essentially independent of network 

size. In Simulation Group 1, I also varied the number of cross features present in the 

groups – features that are unilaterally shared across all groups. This still keeps the groups 

identical, but allows them to be dependent on one another in a very controllable way – I 

can (to an extent) control the group dissimilarity by varying the number of cross features 

in each group. Shown below are more 3-dimensional slices of the results. These are sliced 

along different dimensions, however – I fix the number of features per object (in this 

case, 7, in order to show the results at the highest resolution simulated) as well as the 

number of groups, leaving a three dimensional space with x-axis representing shared 

features within groups and y-axis representing shared features across groups. I present 

two slices, taken with 𝐺𝑐𝑜𝑢𝑛𝑡 = 4 and 𝐺𝑐𝑜𝑢𝑛𝑡 = 12 of the extended network below: 
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Figure 14 - 𝝁𝝁� as a function of Shared Features and Cross Features in the Extended Network with 7 features per 
object, 4 groups

 

Figure 15 - 𝑻 as a function of Shared Features and Cross Features in the Extended Network with 7 features per 
object, 4 groups 
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Figure 16 - 𝝁𝝁� as a function of Shared Features and Cross Features in the Extended Network with 7 features per 
object, 12 groups 

 

Figure 17 - 𝑻 as a function of Shared Features and Cross Features in the Extended Network with 7 features per 
object, 12 groups 
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 From just these two slices, we can see a lot of interesting results. First, as we 

expect, we see that 𝑇 is no longer independent of the network size. While the 2-d 

dimensional slice along 𝑓𝑓𝑐𝑟𝑜𝑠𝑠 = 0 is identical in both cases, for the larger network the 

results for 𝑇 are unilaterally larger than the smaller network’s results. This is because 

with the addition of the cross features, the groups are no longer independent, and so 

affect each other during the training epochs – in this case negatively, requiring more 

epochs to reach 100% accuracy. Thus for more general trials we should expect more 

complex relationships between groups to yield longer training periods. 

 We also see that �̅� tends to increase as the number of cross features increases. 

Furthermore, we see that it increases faster when the number of shared features is higher. 

This effect is actually quite easy to explain. In my earlier analysis, I disregarded the value 

of any group dissimilarities that were not auto-dissimilarities because the value of all 

non-auto-dissimilarities was always 1.0. When cross features are introduced, however, 

this assumption is no longer true; thus, we must amend the expression for predicting the 

amount of interference observed. Recall that 𝐷𝐴(𝐺) is a measure of how dissimilar a 

group is from itself, which is to say that if its value is lower, then we expect that 

particular group to contain elements that are highly semantically related to one another. 

Recall also that 𝐷𝐺(𝐺1,𝐺2) gives the same measure across groups – if this measure is 

low, we expect these groups to be difficult to semantically distinguish from one another. 

When this is the case, the heterogeneous group constructed from them will not operate 

sufficiently differently from a homogeneous group. In other words, the lower 𝐷𝐺(𝐺1,𝐺2) 

is on average, the more similar the heterogeneous control group must be to the 
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homogeneous groups. Since our estimate of interference depends on the assumption that 

the heterogeneous group is distinguishable from the homogeneous group, then 𝐷𝐺���� will 

tend to suppress interference effects, where 𝐷𝐺���� is the average pairwise group 

dissimilarity defined as: 

𝐷𝐺���� =
∑ ∑ 𝐷𝐺(𝐺𝑖,𝐺𝑗)𝑗𝑖  
𝐺𝑐𝑜𝑢𝑛𝑡(𝐺𝑐𝑜𝑢𝑛𝑡 − 1) , 𝑖 ≠ 𝑗 

 where 𝐺𝑐𝑜𝑢𝑛𝑡 is the number of groups being compared 

For these simple networks, all the group dissimilarities are equal (when 𝑖 ≠ 𝑗), and thus  

𝐷𝐺���� = 𝐷𝐺(𝐺1,𝐺2) 

 where 𝐺1,𝐺2 are any two groups and 𝐺1 ≠ 𝐺2 

Thus, we can amend our old expression by introducing this new term as such: 

�̅� ≈ 𝛽e

∝
𝐷𝐴(𝐺)
𝐷𝐺���� + 𝛾 

In the larger network, however, we see that the contribution from the cross features seem 

negligible. In order to explain this effect, we must examine some specific data from the 

simulations. Shown below are the points (𝑓𝑓𝑠ℎ𝑎𝑟𝑒𝑑 = 5,𝑓𝑓𝑐𝑟𝑜𝑠𝑠 = 0) and (𝑓𝑓𝑠ℎ𝑎𝑟𝑒𝑑 =

5,𝑓𝑓𝑐𝑟𝑜𝑠𝑠 = 1) in the 4 group simulation as well as the 12 group simulation: 
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Figure 18 - Boost count output over time, 7 features per output, 5 shared features, 0 cross features, 4 group 
network 

 

Figure 19 - Boost count output over time, 7 features per output, 5 shared features, 1 cross feature, 4 group 
network 
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Figure 20 - Boost count output over time, 7 features per output, 5 shared features, 0 cross features, 12 group 
network 

 

Figure 21 - Boost count output over time, 7 features per output, 5 shared features, 1 cross feature, 12 group 
network 
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Careful analysis of the above graphs shows that for both graphs in both network 

sizes, the slope of the line of best fit for the heterogeneous conditions remain relatively 

constant in both simulations. However, in the smaller network, the slope of the 

homogeneous conditions is significantly lower for the case where 𝑓𝑓𝑐𝑟𝑜𝑠𝑠 = 0. The overall 

slope of these conditions are a result of a combination of positive regions (regions 

wherein we are experiencing semantic interference) and negative regions (regions where 

we feel the effects of repetition priming). Measuring the slopes of each of these regions 

across both graphs finally reveals the culprit. In both cases, the regions with positive 

slope have 𝑚�  ≈ 2. However, the regions with negative slope (the regions caused by 

repetition priming effects) in the graph with 𝑓𝑓𝑐𝑟𝑜𝑠𝑠 = 0 are almost twice as steep as those 

in the graph with 𝑓𝑓𝑐𝑟𝑜𝑠𝑠 = 1. Thus, we can conclude that the discrepancies in the behavior 

of the two simulation sizes are due to repetition priming effects, which in turn affect our 

metric for estimating the magnitude of semantic interference occurring in the simulation. 

Why then, do we see invariant repetition priming effects in the larger network? This 

mostly has to do with the way in which I defined the training period. Because we stop as 

soon as 100% accuracy is reached, and because training epochs are necessarily quantized 

(you cannot stop halfway through a training period) the smaller network is “undertrained” 

in some sense, insofar as repetition priming effects have much greater magnitude due to 

the connection weights have more room for optimization left in them when the training 

period ends. 

This should be encouraging to designers of experiments that wish to explore 

semantic interference effects. It essentially claims that when selecting homogeneous sets, 
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it is unimportant to consider features that they all might share across sets, as these 

features will tend to be inconsequential for large networks. Since features that are shared 

across sets tend to be the hardest to recognize, it is important to know that they do not 

affect any results in the limit. 

Let us briefly consider the above simulations as interpreted by the modified 

network: 

 

Figure 22 - 𝝁𝝁� as a function of Shared Features and Cross Features in the Modified Network with 7 features per 
object, 12 groups 
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Figure 23 - 𝑻 as a function of Shared Features and Cross Features in the Modified Network with 7 features per 
object, 12 groups 

Removing the discontinuity at (𝑓𝑓𝑠ℎ𝑎𝑟𝑒𝑑 = 1,𝑓𝑓𝑐𝑟𝑜𝑠𝑠 = 0) gives us an output nearly 

identical to the extended network, as expected. 

5.2.3: Simulation Group 2 

 In Simulation Group 2, I begin to execute simulations that have different, 

independently defined groups. Furthermore, I begin to vary many of the parameters kept 

constant for Group 1. The simulations in Group 2 were designed to cover as much of the 

parameter space as possible. Exhaustive testing in this regime is no longer possible – 

there are simply too many combinations of parameters. Thus, I designed simulations 

designed to sample the portions of the parameter space that I felt were important or 

instructive. Shown below is a graph tabulating the simulations that comprise Simulation 
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Group 2. In this table, I describe the structure of each of the four homogeneous groups 

that comprise the particular experiment: 

Simulation Group 1 
Features/Object 

Shared features in 
Group 1 

Group 2 
Features/Object 

Shared features in 
Group 2 

2.1 3-7 1-2 5 2 
2.2 3-7 2-3 5 2 
2.3 5 2 3-5 2 
2.4 5 2 3-7 2 
2.5 3-7 2 3-5 2 
2.6 3-7 2 3-7 2 

Table 6 - Simulation Group 2 Summary, homogeneous groups 1 and 2 

Simulation Group 3 
Features/Object 

Shared features in 
Group 3 

Group 4 
Features/Object 

Shared features in 
Group 4 

2.1 5 2 5 2 
2.2 5 2 5 2 
2.3 4-6 2 5-7 2 
2.4 3-7 2 3-7 2 
2.5 4-6 2 5-7 2 
2.6 3-7 2 3-7 2 

Table 7 - Simulation Group 2 Summary, homogeneous groups 3 and 4 

Furthermore, the weights of these features are no longer constant. I set the input 

activation levels by randomly sampling norms from the pool of the McRae et al. feature 

set, which gives us a realistic activation level distribution while still using synthetically 

constructed sets. 

 I will discuss each simulation individually. A summary of metrics calculated and 

observed at output for each simulation is also presented below: 

Simulation Group 
1 𝑫𝑨 

Group 
2 𝑫𝑨 

Group 
3 𝑫𝑨 

Group 
4 𝑫𝑨 

Heterogeneous 
Group 𝑫𝑨 

𝑫𝑮���� 

2.1 .639 .581 .581 .581 .75 1 
2.2 .541 .581 .581 .581 .75 1 
2.3 .581 .523 .566 .616 .75 1 
2.4 .581 .542 .547 .616 .75 1 
2.5 .576 .523 .566 .616 .75 1 
2.6 .576 .542 .547 .616 .75 1 

 Table 8 - Metrics for Simulation Group 2  
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Simulation 𝑻𝒆𝒙𝒕𝒆𝒏𝒅𝒆𝒅 𝑻𝒎𝒐𝒅𝒊𝒇𝒊𝒆𝒅 𝝁𝝁�𝒆𝒙𝒕𝒆𝒏𝒅𝒆𝒅 𝝁𝝁�𝒎𝒐𝒅𝒊𝒇𝒊𝒆𝒅 
2.1 4 119 1.158 8.792 
2.2 4 127 1.211 7.015 
2.3 4 129 1.198 7.816 
2.4 4 132 1.215 6.723 
2.5 4 132 1.214 6.355 
2.6 4 135 1.215 5.358 

Table 9 - Summary Statistics for Simulation Group 2 

 In simulations 2.1 and 2.2, I seek to see the effect of varying the number of 

features per object on a single group. The only difference between simulation 2.1 and 2.2 

is that simulation 2.2 has, on average, more shared features per word within the first 

group. The graphs of the trials for the extended network for both simulations are 

presented below (Figures 24 and 25): 

 

Figure 24 - Simulation 2.1, extended network 
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Figure 25 - Simulation 2.2, extended network 

From these figures, we can clearly see the predictive power of the value of 𝐷𝐴. Recall that 

in the first graph, 𝐷𝐴 of group 1 (the red line) is .639, while in the second it is .541. 

Furthermore, the 𝐷𝐴 of the other three groups in both graphs is .581 – and the 𝐷𝐴 of the 

heterogeneous group is .75. If we were to order these groups according to their 

homogeneity based solely on their 𝐷𝐴 values, we would predict an ordering of: 

𝐺𝐻 < 𝐺1 < 𝐺2,3,4 

for the first simulation and: 

𝐺𝐻 < 𝐺2,3,4 < 𝐺1 

for the second. The ordering of the relative boost counts of each group reflects this 

relationship. 
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 An important thing to note here is the position of the heterogeneous groups with 

respect to the homogeneous groups. Because the heterogeneous groups are composed of 

elements of the homogeneous groups, we expect the heterogeneous groups’ boost counts 

at trial 0 to be positioned at approximately the average of the of the homogeneous 

groups’ boost counts at trial 0, assuming the boost counts within each homogeneous 

groups have low variance. If we see the heterogeneous groups beginning at a boost count 

far away from expectation, we can conclude that this positioning is due to high variance 

in the boost counts in the homogeneous groups. We will see this effect in the modified 

network. I describe outputs with outlying boost counts as antagonistic outputs. These will 

be described in greater detail shortly. 

 Examining the same graphs as output by the modified network shows the same 

effect as above (Figures 26 and 27): 
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Figure 26 - Simulation 2.1, modified network 

 

Figure 27 - Simulation 2.2, modified network 
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While we see the same behavior as predicted, we also see some interesting behavior 

typical of the modified network (see Section 4.3.3). What we see here is an output 

indicative of a network that has not immediately converged to the correct solution. 

Indeed, as evidence for this, the training graph is shown below: 

 

Figure 28 - Simulation 2.1, Training Curve, modified network 

Note that this curve is not monotonically increasing, indicating that the network is 

oscillating through the error space in a way I wish to avoid. However, once the network 

converges to an error-minimizing location, we do see an output that exhibits all the 

behavior we expect (see Figure 27). 

In order to explain the shape of this particular output (Figure 28), it is important to 

understand what is preventing the immediate convergence of the network. Generally, 

convergence is prevented by one or two outputs across multiple groups, which antagonize 

each other’s connectivity with their respective outputs – the aforementioned antagonistic 

outputs. Because of this, while these two or three outputs slowly approach a correct 
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solution, other outputs become overtrained. Thus, when we finally see the net testing 

output, the homogeneous groups exhibit little to no repetition priming, as most of their 

outputs’ connections are already at optimal weights. Meanwhile, the heterogeneous 

group, which contains the antagonistic outputs, improves rapidly as we expect. Thus we 

see much higher discrepancies between the heterogeneous groups and the homogeneous 

groups in cases where an error minimizing location is not immediately approached. The 

relative ordering of the groups is correctly maintained, however. 

This behavior suggests a different method for calculating the metric chosen to 

represent the relative amount of cumulative semantic interference observed – to average 

only the positively sloped regions of all of the curves and take their ratio. This would be 

reasonable, but this metric is generally very difficult to calculate for real data, as the 

regions are very short, and would thus require the repetition of the experiment many 

hundreds of times to generate a reasonable estimate for each slope. 

 The next two simulations operate as a sort of converse to the first two – I now fix 

the number of features (and thus the 𝐷𝐴) of group 1 and vary the other three groups. 

Simulations 5 and 6 vary all four groups. For the extended network, the behavior is 

exactly as described above. Simulation 2.6’s output is shown below (Figure 29). From the 

values of 𝐷𝐴, we expected the following ordering: 

𝐺𝐻 < 𝐺4 < 𝐺1 < 𝐺3 < 𝐺2 
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Figure 29 - Simulation 2.6, extended network 
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This is precisely the ordering we see. However, strangely, for these four runs, the 

modified network produces a nearly opposite ordering, shown below for Simulation 2.6 

(Figure 30): 

 

Figure 30 - Simulation 2.6, modified network 

This is the first example of a situation wherein the “antagonistic inputs” negatively affect 

the results of the modified network’s output. Unfortunately, without modifying the 

learning rule, cases like these will sometimes occur. 

 Consider for a moment the operation mode of the modified network. When we 

introduce an input, that input is immediately transformed via the activateSecondary 

function – the input vector is scaled and rotated towards semantically related features’ 

dimensions. Remember that 𝐷𝐴 is essentially a measure of distance. If this average 

distance is low, we expect high boost counts, as the output vectors are spatially close and 
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are thus difficult to distinguish from another. Unfortunately 𝐷𝐴 does not take into account 

the scaling and rotation caused by activateSecondary. However, we can roughly predict 

the location of the resultant transformed vector by noting the result from Section 4.3.2. 

We know that the secondary activation strengths are proportional to the square of the 

connection weights in the network – and since these connection weights are between 0 

and 1, this will tend to make lower weights far less significant than higher weights. Thus, 

if I design a metric to look at the average of the pairwise maximum shared feature 

between words in a group, we might be able to correct our prediction. Formalizing this, I 

take the Chebyshev distance in the formula for 𝐷𝑊 instead of the Euclidean distance – 

this gives us: 

𝐷𝑊𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑
(𝑤𝑎,𝑤𝑏) =  

lim
𝑛→∞

�∑ �𝑓𝑓𝑘𝑎 − 𝑓𝑓𝑘𝑏�
𝑛

𝑘
𝑛

√2
 

and use this modified formula to calculate 𝐷𝐴 for the groups in the modified network. For 

Simulation 2.6, this gives us: 

Simulation Group 1 
Modified 
𝑫𝑨 

Group 2 
Modified 
𝑫𝑨 

Group 3 
Modified 
𝑫𝑨 

Group 4 
Modified 
𝑫𝑨 

Heterogeneous 
Group Modified 
𝑫𝑨 

Modified 
𝑫𝑮���� 

2.6 .269 .286 .282 .227 .310 .358 
Table 10 - Modified 𝑫𝑨 for Simulation 2.6 

which predicts the ordering: 

𝐺𝐻 < 𝐺2 < 𝐺3 < 𝐺1 < 𝐺4 

 We can average these with our previous predictions after normalization: 

𝐷𝐴𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 =

𝐷𝐴
𝐷𝐺����

+
𝐷𝐴𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑

𝐷𝐺𝑚𝑜𝑑𝚤𝑓𝚤𝑒𝑑
������������

2
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which (in this case) gives us the same ordering. Unfortunately, this still does not give us 

the correct ordering (it underrepresents G2) – but it does correctly place 𝐺4 as the most 

homogeneous group. We will see later that using this adjusted 𝐷𝐴 for the modified graph 

tends to have more predictive power than the naïve approach over the homogeneous 

groups. The heterogeneous groups are still governed by the original 𝐷𝐴, as they have few 

shared features. 

5.2.4: Simulation Group 3 

 In Simulation Group 3, I complete the transition from synthetic, engineered data 

to naturally derived feature norms. All simulations conducted in this Group consist solely 

of data directly extracted from the McRae feature norm dataset. 

 For this group, I extract 4 sets of 4 semantically related concepts from the McRae 

feature norms. These sets serve as our homogeneous groups. As before, a heterogeneous 

group of 4 objects is constructed via the homogeneous groups by including one object 

from each. I repeat this process 4 times to produce 4 separate heterogeneous groups 

which share no objects among them. This simulation configuration is then tested over 4 

different data sets. To do this, I embed the 16 objects’ features in larger feature spaces. I 

do this in order to measure the effect of extraneous knowledge on the performance of the 

networks. For the extended network, I expect these additional features to have little to no 

effect, as they are never directly excited by any input during the testing phases. For the 

modified network, however, I expect to see some change in the output, as I expect these 

extraneous inputs to be secondarily excited by semantically related primary inputs during 

the testing phases. 
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Four different embeddings were chosen; the first of these is a simple control 

group, which contains no features other than the features belonging to the 16 objects of 

the homogeneous groups. The next embedding contains features from a set of additional 

words which share many features with the 16 objects in the homogeneous groups. For 

example, this embedding includes the set of features describing words such as 

“chickadee” and “crow”, which are highly semantically related to the bird group. The 

third embedding contains a set of features belonging to words that are semantically 

unrelated to the base set of 16 objects. Finally, the fourth embedding includes the sets of 

features corresponding to both the second and third embeddings. 

In all four cases, the network is trained on the additional words, but only tested on 

the base 16 words. A summary of the four simulations is presented below (Tables 11-13): 

 

“Birds” 𝑫𝑨 “Tools” 𝑫𝑨 “Instruments” 
𝑫𝑨 

“Clothing” 𝑫𝑨 𝑫𝑮���� 

.474 .629 .521 .650 .986 
Heterogeneous 
Group 1 𝑫𝑨 

Heterogeneous 
Group 2 𝑫𝑨 

Heterogeneous 
Group 3 𝑫𝑨 

Heterogeneous 
Group 4 𝑫𝑨 

.737 .744 .738 .745 
Table 11 - Metrics for Simulation Group 3 

 

Simulation Includes Extraneous 
Homogeneous Word 
Set 

Includes Extraneous 
Heterogeneous Word Set 

Total 
Feature 
Count 

Total Word 
Count 

3.1 No No 133 16 
3.2 Yes No 180 24 
3.3 No Yes 231 28 
3.4 Yes Yes 274 36 

Table 12 - Simulation Descriptions for Simulation Group 3 
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Simulation 𝑻𝒆𝒙𝒕𝒆𝒏𝒅𝒆𝒅 𝑻𝒎𝒐𝒅𝒊𝒇𝒊𝒆𝒅 𝝁𝝁�𝒆𝒙𝒕𝒆𝒏𝒅𝒆𝒅 𝝁𝝁�𝒎𝒐𝒅𝒊𝒇𝒊𝒆𝒅 
3.1 7 907 1.315 8.025 
3.2 7 737 1.276 2.971 
3.3 6 851 1.292 6.856 
3.4 7 712 1.267 2.75 

Table 13 - Summary Statistics for Simulation Group 3 

 Simulation 3.1 serves two purposes: first, it serves as a witness to the validity of 

the claim that both the extended and the modified networks successfully model semantic 

interference using real-world data. Second, it serves as a baseline with which to compare 

the other three simulations in Group 3. I present its boost count outputs across all cycles 

below (Figure 31): 

 

Figure 31 - Simulation 3.1, extended network 

First, we indeed see evidence for both repetition priming and semantic interference from 

the shape of the output of this graph. Furthermore, we see the heterogeneous groups’ 
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boost count at trial 0 sitting close to the average of the homogeneous groups’ boost 

counts for this trial, indicating low variance in the boost counts over all groups. This in 

turn indicates that all outputs are trained equally well. Furthermore, the training period of 

this 133 feature count dataset, the largest yet used in the simulations, was only 7 training 

epochs, showing good scaling performance (consider the data from Simulation Group 1 

for comparison). Finally, the ordering of the four groups’ boost counts is correctly 

predicted by the ordering of the 𝐷𝐴 metric of each group. 

 The discrepancies between the modified network’s results and the extended 

networks results are similar to the differences between the results of Simulation 2.6 

(Figure 32): 

 

Figure 32 - Simulation 3.1, modified network 
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 Here we see the “clothing” homogeneous group appearing much higher than 

expected, and the “instruments” group appearing much lower. Let us calculate the 

modified 𝐷𝐴 from Section 5.2.3 over this data (Tables 14 and 15): 

“Birds” 
Modified 𝑫𝑨 

“Tools” 
Modified 𝑫𝑨 

“Instruments”  
Modified𝑫𝑨 

“Clothing” 
Modified 𝑫𝑨 

Modified 
𝑫𝑮���� 

.089 .247 .097 .046 .380 
Heterogeneous 
Group 1 
Modified 𝑫𝑨 

Heterogeneous 
Group 2 
Modified 𝑫𝑨 

Heterogeneous 
Group 3 
Modified 𝑫𝑨 

Heterogeneous 
Group 4 
Modified 𝑫𝑨 

.297 .307 .272 .231 
Table 14 - Modified 𝑫𝑨 for Simulation Group 3 

“Birds” 
Adjusted 𝑫𝑨 

“Tools” 
Adjusted 𝑫𝑨 

“Instruments”  
Adjusted𝑫𝑨 

“Clothing” 
Adjusted 𝑫𝑨 

.357 .644 .391 .390 
Heterogeneous 
Group 1 
Adjusted 𝑫𝑨 

Heterogeneous 
Group 2 
Adjusted 𝑫𝑨 

Heterogeneous 
Group 3 
Adjusted 𝑫𝑨 

Heterogeneous 
Group 4 
Adjusted 𝑫𝑨 

.765 .781 .732 .683 
Table 15 - Adjusted 𝑫𝑨 for Simulation Group 3 

Predicting the ordering over this data gives us: 

𝐺𝐻2 < 𝐺𝐻1 < 𝐺𝐻3 < 𝐺𝐻4 < 𝐺𝑡𝑜𝑜𝑙𝑠 < 𝐺𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑠 < 𝐺𝑐𝑙𝑜𝑡ℎ𝑒𝑠 < 𝐺𝑏𝑖𝑟𝑑𝑠 

However, since the heterogeneous groups share very few features, it makes more sense to 

use the original 𝐷𝐴 instead of the adjusted 𝐷𝐴 for these groups. Doing so gives us the 

ordering: 

𝐺𝐻4 < 𝐺𝐻2 < 𝐺𝐻3 < 𝐺𝐻1 < 𝐺𝑡𝑜𝑜𝑙𝑠 < 𝐺𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑠 < 𝐺𝑐𝑙𝑜𝑡ℎ𝑒𝑠 < 𝐺𝑏𝑖𝑟𝑑𝑠 

which is the correct ordering. 

Unfortunately we will see that this adjusted metric completely loses its predictive 

power for the simulations that contain extraneous concepts, as it has no mechanism for 

taking their features into account. 

 I present the learning curve of the modified network on Simulation 3.1 below for 

comparison with later simulations (Figure 33): 
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Figure 33 - Simulation 3.1 training curve, modified network 

 In Simulation 3.2, I introduce an additional 2 words per group that are learned by 

the network but not tested for. I expect very little change in output for the extended 

network, but expect significant differences in the output for the modified network, as it 

should involve these inactive words in all of its decisions. The extended network’s output 

for Simulation 3.2 is shown below (Figure 34): 
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Figure 34 - Simulation 3.2, extended network 

As expected, this output closely matches the output from Simulation 3.1. The calculated 

values for �̅�𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑 also match quite closely. We see an overall upwards shift in the graph 

compared to Simulation 3.1 (Figure 31) – this is due to the additional extraneous output 

units contributing to the average competitor weight for each boost calculation, increasing 

boost counts unilaterally. All other variations are due to the noise parameter θ.  
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Now I examine the output for the modified network over the same simulation 

(Figure 35): 

 

Figure 35 - Simulation 3.2, modified network 

We can see many clear differences between this graph and the graph of Simulation 3.1 

(Figure 31), most notably the inversion of the “instruments” and “clothing” groups. This 

indicates that the network is indeed taking into account inputs that are not directly excited 

as we expect. Unfortunately, it is very difficult to predict the network’s behavior by 

studying the structure of the added extraneous features. 

Two important features of this simulation should be noted: even though I added 

input and output units to this network, the overall training period has gotten smaller. 
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Additionally, the 𝝁𝝁�𝑚𝑜𝑑𝑖𝑓𝑓𝑖𝑒𝑑 metric has decreased as well, mostly due to the decrease in 

magnitude of the slope of the heterogeneous conditions. This value for 𝝁𝝁�𝑚𝑜𝑑𝑖𝑓𝑓𝑖𝑒𝑑 is more 

reasonable than the previous simulation’s, as the homogeneous conditions’ slopes in this 

simulation can be more accurately estimated with a linear regression. Thus we see that 

the addition of homogeneous units to the modified network can help alleviate the 

problem of “antagonistic outputs” by coercing them into converging faster, reducing the 

amount of overtraining via reducing the overall training period. 

 In Simulation 3.3, I add extraneous heterogeneous words to the base simulation. 

Because I am using a real feature norm dataset, these heterogeneous words are not fully 

heterogeneous to the four extant groups. The group I chose consisted of 4 foods, and so 

will be referred to as 𝑮𝑓𝑜𝑜𝑑𝑠.I show the cross differences below (Table 16): 

𝑫𝑮(𝑮𝒃𝒊𝒓𝒅𝒔,𝑮𝒇𝒐𝒐𝒅𝒔) 𝑫𝑮(𝑮𝒕𝒐𝒐𝒍𝒔,𝑮𝒇𝒐𝒐𝒅𝒔) 𝑫𝑮(𝑮𝒊𝒏𝒔𝒕𝒓𝒖𝒎𝒆𝒏𝒕𝒔,𝑮𝒇𝒐𝒐𝒅𝒔) 𝑫𝑮(𝑮𝒄𝒍𝒐𝒕𝒉𝒊𝒏𝒈,𝑮𝒇𝒐𝒐𝒅𝒔) 
.990  .997 .993 .998 

Table 16 - Simulation Group 3 Extraneous Heterogeneous Group Cross Differences 

Examining this table, we can roughly predict changes tending upwards in the positions of 

both the “bird” and “instrument” groups for the modified network. I still expect little to 

no change in the extended network. 
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First, I present the extended network’s output (Figure 36): 

 

Figure 36 - Simulation 3.3, extended network 

We see here an overall reduction in boost count unilaterally, but no relative changes in 

the simulation, as expected. The reduction in boost count is due to the extraneous 

heterogeneous features decreasing the competitors’ average activation during the 

boosting calculations. 

  

89 
 



www.manaraa.com

 Now, I examine the modified network’s output (Figure 37): 

 

Figure 37 - Simulation 3.3, modified network 

For reference, compare the relative average boost counts of groups “instruments” and 

“birds” here to the output in Figure 32. We see the predicted increase in boost counts for 

each, due to their lower cross difference with the added extraneous heterogeneous 

features. We also see a slight decrease in �̅�𝑚𝑜𝑑𝑖𝑓𝑓𝑖𝑒𝑑, in spite of the fact that was have a 

longer training period. This is because the small amount of shared features between the  

extraneous heterogeneous group and two of the four homogeneous groups is actually 

helping the network as before, by reducing the amount of overtraining. However, the 
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overall increase in heterogeneity of the network necessitates a longer training period. 

Therefore, we see an overall increase in T with a net decrease in overtraining. 

 Let us also examine the learning curve for the modified network for Simulation 

3.3: 

 

Figure 38 - Simulation 3.3 training curve, modified network 

Note the similarity between this curve and the curve of Figure 33. Indeed, this curve can 

be seen as a simple horizontal scaling of the earlier learning curve; if the added words 

were entirely heterogeneous, this curve would be an exact horizontal scaling of the 

original, corresponding to a simple increase in T with no behavioral changes to the 

network. However, because some of the homogeneous groups share features with the 
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extraneous heterogeneous words, we see a slight smoothing of this curve (most 

noticeable during the final ascent to 100% accuracy). This smoothing corresponds to a 

reduction in overtraining, as it reflects a reduction of the amount of epochs wasted 

moving away from the local error minimum. 

 Finally, Simulation 3.4 includes both extraneous groups, resulting in a 36 word 

network. In the extended network, we see little change, as before. A shift upwards from 

the extraneous homogeneous features is counteracted by a shift downwards from the 

heterogeneous conditions, with a negligible net effect. The modified network benefits 

from the improvement in performance offered by both sets of extraneous features, and 

therefore produces its lowest �̅�𝑚𝑜𝑑𝑖𝑓𝑓𝑖𝑒𝑑 with the shortest T. Shown below are both 

networks’ outputs (Figures 39 and 40): 

 

Figure 39 - Simulation 3.4, extended network 
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Figure 40 - Simulation 3.4, modified network 

Also interesting is the modified network’s training curve, which is the smoothest (and 

shortest) yet produced (Figure 41): 

 

Figure 41 - Simulation 3.4 training curve, modified network 
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5.2.5: Noise Tolerance 

 An important property of any computational model that attempts to operate on 

real-world data is its ability to function properly in spite of noisy inputs. With this in 

mind, I devised a test for evaluating both networks’ performance with increasing amounts 

of noise. I chose a simple simulation from Simulation Group 1 (5 features per object, 3 

shared features per group, no features shared across groups, 4 total groups) as a neutral 

testing platform and simulated noisy inputs by increasing the internal noisiness of the 

network itself – this noise directly affects the connection weight updates and all network 

units’ output values. This particular simulation was chosen as the modified network had a 

monotonically increasing learning curve on it (i.e. immediately converged to an error-

minimizing set of connection weights) and because it lay in the center of the region of 

test coverage. I then graphed the maximum accuracy achievable in the testing phase 

against the noise parameter θ, which acts as the standard deviation of a normal 

distribution (centered at 0) from which I sample noise vectors that are added to 

connection weights and unit outputs throughout the network. When the simulation could 

not reach 100% accuracy during the testing phase, the value of its asymptote at 1000 

epochs was taken as its maximum. 

 It should also be noted that although the networks can achieve 100% accuracy for 

many of the noise parameter values given below, their outputs are generally illegible for 

higher noise values, i.e., the network correctly classifies the output but does it in what is 

essentially a random time (boost count) and so does not necessarily produce an output 

that is easily interpretable as a demonstration of semantic interference. 
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The results for both networks are shown below: 

 

Figure 42 - Accuracy vs. Noise, extended network 

 

Figure 43 - Accuracy vs. Noise, modified network 

Both networks perform well up until the 0.2 standard deviation mark, where performance 

starts to degrade (Figures 42 and 43). The performance degradation occurs faster in the 

modified network, which is more sensitive to noise overall. However, both networks are 
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relatively robust to noise, maintaining near 100% accuracy even in the face of errors of 

~ ± .2 excitation weight.  

5.2.6: Longevity Testing 

 One final property of the networks that I explored sought to understand how 

“long” the learned effects of semantic interference lasted. Because neural networks do 

not naturally change or degrade over time, I needed to emulate the passage of time via 

other means. The following steps were performed in these simulations in order to 

approximate the effects of time passing: 

1. Train the network to 100% accuracy. 

2. Test the network on all homogeneous conditions consecutively, in random 

order. Do not reset the network during or after testing. 

3. Train the network a variable number of epochs again. The number of epochs 

here corresponds to the time that has passed. 

4. Re-test a copy of the resultant network on each homogeneous and 

heterogeneous condition and collate the results 

Thus, I emulate the passage of time via a variable number of complete 

presentations of the word set in a random order. By presenting the words in a random 

order, and not in close proximity to other semantically related words, I emulate the 

natural course of retrieval of such words over time. I then retest to see how much 

semantic interference the network produces later. If the amount of interference increases, 

I can conclude that the interference effects produced via the learning mechanism in the 
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testing phase have remained in memory in spite of the interstitial period of random word 

use. 

I simulated the results of the above procedure on both networks over Simulation 

3.4 – the most complex dataset. I then graphed the 𝝁𝝁� metric against the number of epochs 

used in step 3 of the above procedure. The results are reproduced below (Figures 44 and 

45): 

 

Figure 44 - Longevity Testing, Extended Network 

 

Figure 45 - Longevity Testing, Modified Network 
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 Examining the figures, both networks show an initial period of increasing 

interference. This can be attributed to the experimental method; because the interstitial 

period consists almost entirely of words that are also members of the testing set, both 

networks enjoy a period of further optimization beyond the 100% accuracy mark that will 

continue to reduce overall boosting rates due to refinements in the selectiveness of the 

connection weights. After this period is over, however, we see the expected reduction in 

interference effects in both graphs. It seems that the modified network maintains the state 

of maximum interference for longer than the extended network. However, they are 

difficult to compare directly; the modified network requires an initial training period of 

approximately 700 epochs, while the extended network only requires approximately 7 

epochs. The initial spike in the modified network graph is due to the “antagonistic 

outputs” as explained earlier – once the network has converged to 100% accuracy, we see 

that these outputs quickly revert to their normal behavior, thus dropping the 𝝁𝝁� measures 

to more reasonable levels. 

 The above graphs are deceiving, however, because of the choice of metric. While 

𝝁𝝁� is useful for measuring the difference in interference across equally trained networks, it 

is not necessarily a good measure of semantic interference when comparing networks 

with different training periods. I select a number of the points above for presentation 

below in order to evaluate the effects of semantic interference manually. I present the 

data for (Epochs = 0), (Epochs = 10), (Epochs = 50), and (Epochs = 100) for the extended 

network (Figures 46, 47, 48, and 49): 
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Figure 46 - Longevity Test, Epochs = 0, extended network 

 

Figure 47 - Longevity Test, Epochs = 10, extended network 
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Figure 48 - Longevity Test, Epochs = 50, extended network 

 

 

Figure 49 - Longevity Test, Epochs = 100, extended network 
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Comparing the four graphs reveals that the characteristic increase in boost counts over 

each cycle due to semantic interference is clearly diminishing over time. With (Epochs = 

0) and (Epochs = 10) we see a clear step pattern. By the time we reach (Epochs = 100), 

however, this pattern has mostly disappeared. We can still identify the heterogeneous 

groups by sight, so there still is an overall cumulative semantic interference effect 

occurring – but within each trial, its effects are significantly reduced with respect to the 

initial testing phase. Thus, I might conclude that the amount of interference actually 

peaks much sooner than indicated by Figure 44; indeed, it seems to begin to decline 

shortly after the (Epochs = 10) point. 

 The graphs for the modified network are presented below for (Epochs = 0), 

(Epochs = 100), and (Epochs = 200) (Figures 50, 51, and 52): 

 

Figure 50 - Longevity Test, Epochs = 0, modified network 
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Figure 51 - Longevity Test, Epochs = 100, modified network 

 

Figure 52 - Longevity Test, Epochs = 200, modified network 
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 Comparing these three figures, we see that the characteristic step pattern caused 

by semantic interference does not dissipate until approximately the 200 epoch mark in the 

modified network. We also see the “birds” and “instruments” groups swap positions, as 

well as the “tools” and “clothing” groups. The reasons for this are unclear, but likely are 

due to the structure of the extraneous features described in Chapter 5. 

 Though the extended network only retains interference effects for 10 epochs, its 

total training period T was a mere 7 epochs. The modified network retains interference in 

memory for at least 200 epochs; however, its training period was approximately 700 

epochs. Proportionally, it seems that the extended network is less sensitive to the passage 

of time – but ultimately, it is difficult to compare these two values meaningfully. The 

only conclusion I can safely draw is that both networks do retain the interference effects 

in memory for a significant period of time – at least as long as a significant fraction of the 

training period.  

103 
 



www.manaraa.com

6: Final Remarks 

6.1: Conclusions 

 In this thesis I have presented two extensions to the Oppenheim et al. 

computational model for cumulative semantic interference. Both extensions sought to 

generalize the original model into a framework over which more realistic simulations 

could be conducted. These models handle data derived from feature norms collected from 

human participants, and produce outputs which reflect a measure of semantic interference 

based on the semantic content of the data provided. 

 Furthermore, the modified model sought to include non-shared features of 

competitor outputs in the learning process, as well as features semantically related to 

activated features. It achieves this by using an algorithm that automatically detects and 

activates inputs that belong to both cases. 

 Both models succeeded in modeling the semantic interference effects seen in the 

model designed by Oppenheim et al. The extended model also correctly generalizes the 

effects seen to more complex datasets, and in all cases accurately reflects the internal 

structure of the data as interpreted by the metric functions, which were meant to serve as 

basic measures of semantic structure. 

 The modified model converged in all cases tested as well, but produced results 

different than those predicted by the designed metrics. Because the construction of the 

metrics was mathematically driven, and not designed based on principles of psychology, 

it is unclear which network is a more accurately predictor of semantic interference effects 
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as observed in humans. Only future research will corroborate these findings or determine 

that adjustments to this model are needed. 

 In examining the simulation results, I also found that as the space of learned 

words increased, features shared among all words became less and less relevant to 

selection times. This indicates that for sufficiently large networks, words that are 

composed of many features begin to be typified by a smaller subset of features that most 

discriminate them. I also see in the modified network a tendency to produce outputs that 

more closely correspond to the modified Chebyshev metric introduced in Section 5.2.3. 

This further supports the notion that larger, more complex networks tend to select words 

via a very small subset of strong features, rather than a larger subset of weaker features. 

 I found also in the modified network that the presence of extraneous 

homogeneous features actually benefits the learning mechanism. Learning is orders of 

magnitude faster for networks that contained many examples semantically related to their 

testing sets in their training sets. This suggests that improving the performance of the 

modified network is as simple as providing it with extra, semantically related examples to 

learn alongside the target examples. As the network grows larger, this procedure becomes 

less necessary, as these extraneous examples will naturally occur more frequently. This is 

partly the reason why I see such dramatically poor performance in the smallest modified 

network sizes for Simulation Group 1. 

 Finally, I see that both networks perform well in the presence of noise, though the 

modified network remained more sensitive than the extended network. I also see that the 

networks retain a state of interference even when presented with long interstitial periods 
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of random word activation, akin to results found in human experimentation. I also see 

that this interference eventually does decrease over time, as expected. 

All of these properties make these networks useful for simulating large scale 

experiments that seek to measure memory retrieval time in response to various triggering 

conditions. The generalizations introduced allow them to be used on feature norm 

datasets designed for this purpose, unlike the original toy model designed by Oppenheim 

et al. 

6.2: Future Work 

 There are two natural extensions to the models presented. The first of these 

concerns the modified network. As discussed in Section 4.3.4, the modified network’s 

learning rule does not accurately calculate the gradient function, and thus does not 

modify the weights of the connections in the network as efficiently as it could. Modifying 

the learning rule by recalculating the expression for the gradient given the 

activateSecondary function would allow it to converge much more quickly. This in turn 

would allow it to be compared more easily to the results of the extended network. 

 The second natural extension is the addition of hidden layers in any or all of the 

networks presented. Examining the input vector using a multilayer convolutional 

network, for example, would be particularly interesting (Lee et al., 2009). It might be the 

case that such a network forms natural “representative” neurons in the hidden layers that 

represent a hidden semantic group, which in turn might allow for the solution of remote 

association tests (RATs) over these data. These extensions were not pursued in the 

interest of time, however. 
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 Another interesting problem, discovered while designing the simulation groups, 

was a method for algorithmically generating datasets with specified 𝐷𝐺���� and 𝐷𝐴����. This 

problem is actually an interesting optimization problem in computational geometry. 

Further exploring algorithms such as these would allow me to test these networks over a 

wider range of dataset configurations. 

 Finally, the modified and extended networks produce notably different results for 

complex datasets. Real-world experiments could be designed that have datasets 

analogous to the simulations run in Simulation Group 3, for example. By comparing the 

experimental results with the simulation results, I might be able to evaluate the 

hypotheses underlying the two networks’ implementations. If the modified network 

demonstrates higher predictive power than the extended network, this would act as strong 

evidence for the “co-activation hypothesis” of O’Séaghdha et al. (2013), and would serve 

as a witness to many of the arguments presented in this thesis. 
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